The Total solution for NCERT class 6-12
Express thetrigonometric ratios sin A, sec A and tan A in terms of cot A.
Answer - 1 : -
Answer - 2 : -
Evaluate:
(i) (sin263°+ sin227°)/(cos217° + cos273°)(ii) sin 25° cos 65° + cos 25° sin 65°
Answer - 3 : -
Answer - 4 : -
(i) 9 sec2A – 9 tan2A =(A) 1 (B) 9 (C) 8 (D) 0(ii) (1 + tan θ + sec θ) (1 + cot θ – cosec θ)(A) 0 (B) 1 (C) 2 (D) – 1(iii) (sec A + tan A) (1 – sin A) =(A) sec A (B) sin A (C) cosec A (D) cos A
(iv) 1+tan2A/1+cot2A=
(A) sec2 A (B) -1 (C) cot2A (D) tan2A
Solution
Prove the followingidentities, where the angles involved are acute angles for which theexpressions are defined.
Answer - 5 : -
(i) (cosec θ – cotθ)2 = (1-cos θ)/(1+cos θ)
(ii) cos A/(1+sinA) + (1+sin A)/cos A = 2 sec A
(iii) tan θ/(1-cotθ) + cot θ/(1-tan θ) = 1 + sec θ cosec θ
[Hint : Write the expression in terms of sin θ and cos θ]
(iv) (1 + secA)/sec A = sin2A/(1-cos A)
[Hint : Simplify LHS and RHS separately]
(v) ( cos A–sinA+1)/( cos A +sin A–1) = cosec A + cot A, using the identity cosec2A= 1+cot2A.
(vii) (sin θ – 2sin3θ)/(2cos3θ-cosθ) = tan θ(viii) (sin A + cosec A)2 + (cos A + sec A)2 = 7+tan2A+cot2A(ix) (cosec A – sin A)(sec A – cos A) = 1/(tan A+cotA)[Hint : Simplify LHS and RHS separately](x) (1+tan2A/1+cot2A) = (1-tan A/1-cot A)2 = tan2A