MENU
Question -

Provethat:
(i) (cos 11o┬а+sin 11o) / (cos 11o┬атАУ sin 11o) = tan 56o┬а┬а

(ii) (cos9o┬а+ sin 9o) / (cos 9o┬атАУ sin 9o)= tan 54o

(iii)(cos 8o┬атАУ sin 8o) / (cos 8o┬а+ sin 8o)= tan 37o



Answer -

(i)┬а(cos 11o┬а+ sin 11o) / (cos11o┬атАУ sin 11o) = tan 56o

Let us consider LHS:

(cos 11o┬а+ sin 11o) / (cos11o┬атАУ sin 11o)

Now let us divide the numerator and denominator by cos11o┬аwe get,

(cos 11o┬а+ sin 11o) / (cos11o┬атАУ sin 11o) = (1 + tan 11o) / (1 тАУ tan11o)

= (1 + tan 11o) / (1- 1├Чtan 11o)

= (tan 45o┬а+ tan 11o) / (1тАУ tan 45o┬а├Ч tan 11o)

We know that tan (A+B) = (tan A + tan B) / (1 тАУ tan Atan B)

So,

(tan 45o┬а+ tan 11o) / (1 тАУtan 45o┬а├Ч tan 11o) = tan (45o┬а+ 11o)

= tan 56o

= RHS

тИ┤ LHS = RHS

Hence proved.

(ii)┬а(cos 9o┬а+ sin 9o) / (cos 9o┬атАУsin 9o) = tan 54o

Let us consider LHS:

(cos 9o┬а+ sin 9o) / (cos 9o┬атАУsin 9o)

Now let us divide the numerator and denominator by cos9o┬аwe get,

(cos 9o┬а+ sin 9o) / (cos 9o┬атАУsin 9o) = (1 + tan 9o) / (1 тАУ tan 9o)

= (1 + tan 9o) / (1 тАУ 1 ├Ч tan 9o)

= (tan 45o┬а+ tan 9o) / (1 тАУtan 45o┬а├Ч tan 9o)

We know that tan (A+B) = (tan A + tan B) / (1 тАУ tan Atan B)

So,

(tan 45o┬а+ tan 9o) / (1 тАУtan 45o┬а├Ч tan 9o) = tan (45o┬а+ 9o)

= tan 54o

= RHS

тИ┤ LHS = RHS

Hence proved.

(iii)┬а(cos 8o┬атАУ sin 8o) / (cos 8o┬а+sin 8o) = tan 37o

Let us consider LHS:

(cos 8o┬атАУ sin 8o) / (cos 8o┬а+sin 8o)

Now let us divide the numerator and denominator by cos8o┬аwe get,

(cos 8o┬атАУ sin 8o) / (cos 8o┬а+sin 8o) = (1 тАУ tan 8o) / (1 + tan 8o)

= (1 тАУ tan 8o) / (1 + 1├Чtan 8o)

= (tan 45o┬атАУ tan 8o) / (1 +tan 45o┬а├Чtan 8o)

We know that tan (A+B) = (tan A + tan B) / (1 тАУ tan Atan B)

So,

(tan 45o┬атАУ tan 8o) / (1 +tan 45o┬а├Чtan 8o) = tan (45o┬атАУ 8o)

= tan 37o

= RHS

тИ┤ LHS = RHS

Hence proved.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×