MENU

RD Chapter 19 Arithmetic Progressions Ex 19.1 Solutions

Question - 1 : -

If the nth┬аterm of a sequence is given by an┬а=n2┬атАУ n+1, write down its first five terms.

Answer - 1 : -

Given:

an┬а= n2┬атАУn+1

By using the values n= 1, 2, 3, 4, 5 we can find the first five terms.

When n = 1:

a1┬а=(1)2┬атАУ 1 + 1

= 1 тАУ 1 + 1

= 1

When n = 2:

a2┬а=(2)2┬атАУ 2 + 1

= 4 тАУ 2 + 1

= 3

When n = 3:

a3┬а=(3)2┬атАУ 3 + 1

= 9 тАУ 3 + 1

= 7

When n = 4:

a4┬а=(4)2┬атАУ 4 + 1

= 16 тАУ 4 + 1

= 13

When n = 5:

a5┬а=(5)2┬атАУ 5 + 1

= 25 тАУ 5 + 1

= 21

тИ┤┬аFirst five termsof the sequence are 1, 3, 7, 13, 21.

Question - 2 : -

A sequence is defined by an┬а= n3┬атАУ 6n2┬а+11n тАУ 6, n┬атИИ┬аN. Show that the first threeterms of the sequence are zero and all other terms are positive.

Answer - 2 : -

Given:

an┬а= n3┬атАУ6n2┬а+ 11n тАУ 6, n┬атИИ┬аN

By using the values n= 1, 2, 3 we can find the first three terms.

When n = 1:

a1┬а=(1)3┬атАУ 6(1)2┬а+ 11(1) тАУ 6

= 1 тАУ 6 + 11 тАУ 6

= 12 тАУ 12

= 0

When n = 2:

a2┬а=(2)3┬атАУ 6(2)2┬а+ 11(2) тАУ 6

= 8 тАУ 6(4) + 22 тАУ 6

= 8 тАУ 24 + 22 тАУ 6

= 30 тАУ 30

= 0

When n = 3:

a3┬а=(3)3┬атАУ 6(3)2┬а+ 11(3) тАУ 6

= 27 тАУ 6(9) + 33 тАУ 6

= 27 тАУ 54 + 33 тАУ 6

= 60 тАУ 60

= 0

This shows that thefirst three terms of the sequence is zero.

Now, letтАЩs check forwhen n = n:

an┬а= n3┬атАУ6n2┬а+ 11n тАУ 6

= n3┬атАУ6n2┬а+ 11n тАУ 6 тАУ n + n тАУ 2 + 2

= n3┬атАУ6n2┬а+ 12n тАУ 8 тАУ n + 2

= (n)3┬атАУ3├Ч2n(n тАУ 2) тАУ (2)3┬атАУ n + 2

By using the formula,{(a тАУ b)3┬а= (a)3┬атАУ (b)3┬атАУ 3ab(aтАУ b)}

an┬а=(n тАУ 2)3┬атАУ (n тАУ 2)

Here, n тАУ 2 willalways be positive for n > 3

тИ┤┬аan┬аisalways positive for n > 3

Question - 3 : - Find the first four terms of the sequencedefined by a1┬а= 3 and an┬а= 3anтАУ1┬а+2, for all n > 1.

Answer - 3 : -

Given:

a1┬а= 3and an┬а= 3anтАУ1┬а+ 2, for all n > 1

By using the values n= 1, 2, 3, 4 we can find the first four terms.

When n = 1:

a1┬а= 3

When n = 2:

a2┬а=3a2тАУ1┬а+ 2

= 3a1┬а+2

= 3(3) + 2

= 9 + 2

= 11

When n = 3:

a3┬а=3a3тАУ1┬а+ 2

= 3a2┬а+2

= 3(11) + 2

= 33 + 2

= 35

When n = 4:

a4┬а=3a4тАУ1┬а+ 2

= 3a3┬а+2

= 3(35) + 2

= 105 + 2

= 107

тИ┤┬аFirst four termsof sequence are 3, 11, 35, 107.

Question - 4 : -

Write the first five terms in each of the following sequences:
(i) a1┬а= 1, an┬а= anтАУ1┬а+ 2, n> 1

(ii) a1┬а= 1 = a2, an┬а= anтАУ1┬а+anтАУ2, n > 2

(iii) a1┬а= a2┬а=2, an┬а= anтАУ1┬атАУ1, n > 2

Answer - 4 : -

(i)┬аa1┬а=1, an┬а= anтАУ1┬а+ 2, n > 1

By using the values n= 1, 2, 3, 4, 5 we can find the first five terms.

Given:

a1┬а= 1

When n = 2:

a2┬а= a2тАУ1┬а+2

= a1┬а+2

= 1 + 2

= 3

When n = 3:

a3┬а= a3тАУ1┬а+2

= a2┬а+2

= 3 + 2

= 5

When n = 4:

a4┬а= a4тАУ1┬а+2

= a3┬а+2

= 5 + 2

= 7

When n = 5:

a5┬а= a5тАУ1┬а+2

= a4┬а+2

= 7 + 2

= 9

тИ┤┬аFirst five termsof the sequence are 1, 3, 5, 7, 9.

(ii)┬аa1┬а= 1= a2, an┬а= anтАУ1┬а+ anтАУ2, n> 2

By using the values n= 1, 2, 3, 4, 5 we can find the first five terms.

Given:

a1┬а= 1

a2┬а= 1

When n = 3:

a3┬а= a3тАУ1┬а+a3тАУ2

= a2┬а+a1

= 1 + 1

= 2

When n = 4:

a4┬а= a4тАУ1┬а+a4тАУ2

= a3┬а+a2

= 2 + 1

= 3

When n = 5:

a5┬а= a5тАУ1┬а+a5тАУ2

= a4┬а+a3

= 3 + 2

= 5

тИ┤┬аFirst five termsof the sequence are 1, 1, 2, 3, 5.

(iii)┬аa1┬а= a2┬а=2,an┬а= anтАУ1┬атАУ 1, n > 2

By using the values n= 1, 2, 3, 4, 5 we can find the first five terms.

Given:

a1┬а= 2

a2┬а= 2

When n = 3:

a3┬а= a3тАУ1┬атАУ1

= a2┬атАУ1

= 2 тАУ 1

= 1

When n = 4:

a4┬а= a4тАУ1┬атАУ1

= a3┬атАУ1

= 1 тАУ 1

= 0

When n = 5:

a5┬а= a5тАУ1┬атАУ1

= a4┬атАУ1

= 0 тАУ 1

= -1

тИ┤┬аFirst five termsof the sequence are 2, 2, 1, 0, -1.

Question - 5 : -

The Fibonacci sequence is defined by a1┬а= 1┬а= a2,an┬а= anтАУ1┬а+ anтАУ2┬аfor n > 2.Find (an+1)/an┬аfor n = 1, 2, 3, 4, 5.

Answer - 5 : -

Given:

a1┬а= 1

a2┬а= 1

an┬а= anтАУ1┬а+anтАУ2

When n = 1:

(an+1)/an┬а=(a1+1)/a1

= a2/a1

= 1/1

= 1

a3┬а= a3тАУ1┬а+a3тАУ2

= a2┬а+a1

= 1 + 1

= 2

When n = 2:

(an+1)/an┬а=(a2+1)/a2

= a3/a2

= 2/1

= 2

a4┬а= a4тАУ1┬а+a4тАУ2

= a3┬а+a2

= 2 + 1

= 3

When n = 3:

(an+1)/an┬а=(a3+1)/a3

= a4/a3

= 3/2

a5┬а= a5тАУ1┬а+a5тАУ2

= a4┬а+a3

= 3 + 2

= 5

When n = 4:

(an+1)/an┬а=(a4+1)/a4

= a5/a4

= 5/3

a6┬а= a6тАУ1┬а+a6тАУ2

= a5┬а+a4

= 5 + 3

= 8

When n = 5:

(an+1)/an┬а=(a5+1)/a5

= a6/a5┬а=8/5

тИ┤ Value of (an+1)/an┬аwhenn = 1, 2, 3, 4, 5 are 1, 2, 3/2, 5/3, 8/5

Free - Previous Years Question Papers
Any questions? Ask us!
×