The Total solution for NCERT class 6-12
Answer - 1 : -
(i) (3x + 2y + 2z) (9x2 + 4y2 +4z2 – 6xy – 4yz – 6zx)= (3x + 2y + 2z) [(3x)2 + (2y)2 + (2z)2 –3x x 2y + 2y x 2z + 2z x 3x]= (3x)3 + (2y)3 + (2z)3 –3 x 3x x 2y x 2z= 27x3 + 8y3 + 8Z3 – 36xyz(ii) (4x – 3y + 2z) (16x2 + 9y2 + 4z2 +12xy + 6yz – 8zx)= (4x -3y + 2z) [(4x)2 + (-3y)2 + (2z)2 –4x x (-3y + (3y) x (2z) – (2z x 4x)]= (4x)3 + (-3y)3 + (2z)3 – 3 x4x x (-3y) x (2z)= 64x3 – 27y3 + 8z3 + 72xyz(iii) (2a -3b- 2c) (4a2 + 9b2 + 4c2 +6ab – 6bc + 4ca)= (2a -3b- 2c) [(2a)2 + (3b)2 + (2c)2 –2a x (-3b) – (-3b) x (-2c) – (-2c) x 2a]= (2a)3 + (3b)3 + (-2c)3 -3x 2ax (-3 b) (-2c)= 8a3 – 21b3 -8c3 – 36abc(iv) (3x – 4y + 5z) (9x2 + 16y2 + 25z2 +12xy – 15zx + 20yz)= [3x + (-4y) + 5z] [(3x)2 + (-4y)2 + (5z)2 –3x x (-4y) -(-4y) (5z) – 5z x 3x]= (3x)3 + (-4y)3 + (5z)3 – 3 x3x x (-4y) (5z)= 27x3 – 64y3 + 125z3 + 180xyz
Answer - 2 : -
Answer - 3 : -
x3 + y3 + z3 –3xyz = (x + y + z) (x2 + y2 + z2 -xy-yz – zx)Now, x + y + z = 8Squaring, we get(x + y + z)2 = (8)2x2 + y2 + z2 + 2(xy + yz+ zx) = 64⇒ x2 +y2 + z2 + 2 x 20 = 64⇒ x2 + y2 + z2 + 40 = 64⇒ x2 + y2 + z2 = 64 – 40 = 24Now,x3 + y3 + z3 – 3xyz = (x + y +z) [x2 + y2 + z2 – (xy + yz +zx)]= 8(24 – 20) = 8 x 4 = 32
Answer - 4 : -
Answer - 5 : -
a + b +c = 9Squaring, we get(a + b + c)2 = (9)2⇒ a2 + b2 + c2 + 2 (ab + be + ca)= 81⇒ 35 + 2(ab + bc + ca) = 812(ab + bc + ca) = 81 – 35 = 46∴ ab + bc + ca = 462 =23Now, a3 + b3 + c3 – 3abc= (a + b + c) [a2 + b2 + c2 –(ab + bc + ca)]= 9[35 – 23] = 9 x 12 = 108
Answer - 6 : -
Answer - 7 : -
Answer - 8 : -
Answer - 9 : -
Answer - 10 : -