MENU

Chapter 13 Exponents and Powers Ex 13.1 Solutions

Question - 1 : - Find the value of
(i) 26
(ii) 93
(iii) 112
(iv) 54

Answer - 1 : -

(i) 26 = 2 × 2 ×2 × 2 × 2 × 2 = 64
(ii) 93 = 9 × 9 × 9 = 729
(iii) 112 = 11 × 11 = 121
(iv) 54 = 5 × 5 × 5 × 5 = 625

Question - 2 : -
Exress the following in exponential form:
(i) 6 × 6 × 6 × 6
(ii) t × t
(iii) b × b × b × b
(iv) 5 × 5 × 7 × 7 × 7
(v) 2 × 2 × a × a
(vi) a × a × a × c × c × c× c × d

Answer - 2 : -

(i) 6 × 6 × 6 × 6 = 63
(ii) t × t = t2
(iii) b × b × b × b = b4
(iv) 5 × 5× 7 × 7 × 7 = 52 × 73 = 52 ·73
(v) 2 × 2 × a × a = 22 × a2 = 22 ·a2
(vi) a × a ×a × c × c × c × c × d = a3 ×c4 × d = a3 ·c4 · d

Question - 3 : -
Express each of the following numbers using exponential notation:
(i) 512
(ii) 343
(iii) 729
(iv) 3125

Answer - 3 : -

Question - 4 : - Identify the greater number, wherever possible, ineach of the following?
(i) 43 or 34
(ii) 53 or 35
(iii) 28 or 82
(iv) 1002 or 2100
(v) 210 or 102

Answer - 4 : -

(i) 43 or 34
43 = 4 × 4 × 4 = 64,
34 = 3 × 3 × 3 × 3 = 81
Since 81 > 64
34 isgreater than 43.

(ii) 53 or 35
53 = 5 × 5 × 5 = 125
35 = 3 × 3 × 3 × 3 × 3 = 243
Since 243 > 125
35 isgreater than 53.

(iii) 28 or 82
28 =2 × 2 × 2 × 2 × 2 × 2 × 2 ×2 = 256
82 = 8 × 8 = 64
Since 256 > 64
28 isgreater than 28.

(iv) 1002 or 2100
1002 = 100 × 100 = 10000
2100 = 2 × 2 × 2 × … 100 times
Here 2 × 2 × 2 ×2 × 2 × 2 × 2 ×2 × 2 × 2 × 2 × 2 × 2 × 2 = 214 = 16384
Since 16384 > 10,000
2100is greater than 1002.

(v) 210 or 102
210 = 2 × 2 × 2 × 2 × 2 × 2 × 2× 2 × 2 × 2 = 1024
102 = 10 × 10 = 100
Since 1024 > 100
210 isgreater than 102.

Question - 5 : -
Express each of the following as the product of powers of their prime
(i) 648
(ii) 405
(iii) 540
(iv) 3600

Answer - 5 : -

Question - 6 : - Simplify:
(i) 2 × 103
(ii) 72 × 22
(iii) 23 × 5
(iv) 3 × 44
(v) 0 × 102
(vi) 52 × 33
(vii) 24 × 32
(viii) 32 × 104

Answer - 6 : -

(i) 2 × 103 = 2 ×10 × 10 × 10 = = 2000
(ii) 72 × 22 = = 7 × 7 × 2 × 2 = 196
(iii) 23 × 5 = 2 × 2 × 2 × 5 = 40
(iv) 3 × 44 = 3 × 4 × 4 × 4 × 4= 768
(v) 0 × 102 = 0 × 10 × 10 = = 0
(vi) 52 × 33 = 5 × 5 × 3 × 3 × 3 = 675
(vii) 24 × 32 = 2 × 2 × 2 × 2 × 3 × 3 = 144
(viii) 32 × 104 = 3 × 3 × 10 × 10 × 10 × 10 = 90000

Question - 7 : - Simplify:
(i) (-4)3
(ii) (-3) × (-2)3
(iii) (-3)2 × (-5)2
(iv) (-2)3 × (-10)3

Answer - 7 : -

(i) (-4)2 = (-4)× (-4) × (-4) = -64 [ (-a)odd number = -aoddnumber]
(ii) (-3) × (-2)3 = (-3) × (-2)× (-2) × (-2)
= (-3) × (-8) = 24
(iii) (-3)2 × (-5)2 = [(-3) × (-5)]2
= 152 = 225 [
am ×bm = (ab)m)
(iv) (-2)3 × (-10)3 = [(-2) × (-10)]3
= 202 = 8000 [
am ×bm = (ab)m]

Question - 8 : - Compare the following:
(i) 2.7 × 1012; 1.5 × 108
(ii) 4 × 1014; 3 × 1014

Answer - 8 : -

(i) 2.7 × 1012; 1.5 ×108
Here, 1012 > 108
2.7 ×1012> 1.5 × 108
(ii) 4 × 1014; 3 × 1017
Here, 1017 > 1014
4 × 1014 < 3 × 1017

Free - Previous Years Question Papers
Any questions? Ask us!
×