MENU
Question -

Provethat:

(i) 

(ii) 

(iii) 

(iv) sinB= sinA + sin(A-B) – 2sin A cos B sin (A –B)

(v) cosA+ cosB – 2 cos A cos B cos (A +B) = sin(A +B)

(vi) 



Answer -

(i) 

= tan A

= RHS

∴ LHS = RHS

Hence proved.

(ii)

Let us consider LHS:
= tan A – tan B + tan B – tan C + tan C – tan A
= 0
= RHS
∴ LHS = RHS
Hence proved.
(iii)
= cotB – cotA + cot C – cotB + cotA – cot C
= 0
= RHS
∴ LHS = RHS
Hence proved.

(iv) sinB = sinA + sin(A-B)– 2sin A cos B sin (A – B)

Let us consider RHS:

sin2A + sin(A -B) – 2 sinA cos B sin (A – B)

sin2A + sin (A -B) [sin (A –B) – 2 sin Acos B]

We know that, sin (A –B) = sin A cos B – cos A sin B

So,

sin2A + sin (A -B) [sin A cos B – cos A sinB – 2 sin A cos B]

sin2A + sin (A -B) [-sin A cos B – cos Asin B]

sin2A – sin (A -B) [sin A cos B + cos A sinB]

We know that, sin (A +B) = sin A cos B + cos A sin B

So,

sin2A – sin (A – B) sin (A + B)

sinA – sinA + sinB

sinB

= LHS

LHS = RHS

Hence proved.

(v) cosA + cosB – 2cos A cos B cos (A + B) = sin(A + B)

Let us consider LHS:

cos2A + cos2B – 2 cos A cos Bcos (A +B)

cos2A + 1 – sin2B – 2 cos A cosB cos (A +B)

1 + cos2A – sin2B – 2 cos Acos B cos (A +B)

We know that, cos2A – sin2B =cos (A +B) cos (A –B)

So,

1 + cos (A +B) cos (A –B) – 2 cos A cos B cos (A+B)

1 + cos (A +B) [cos (A –B) – 2 cos A cos B]

We know that, cos (A – B) = cos A cos B + sin A sin B.

So,

1 + cos (A +B) [cos A cos B + sin A sin B – 2 cosA cos B]

1 + cos (A +B) [-cos A cos B + sin A sin B]

1 – cos (A +B) [cos A cos B – sin A sin B]

We know that, cos (A +B) = cos A cos B – sin A sin B.

So,

1 – cos(A + B)

sin(A + B)

= RHS

LHS = RHS

Hence proved.

(vi)

∴ LHS = RHS

Hence proved.


Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×