The Total solution for NCERT class 6-12
Answer - 1 : -
(i)Unit digit of 812 = 1(ii) Unit digit of 2722 = 4(iii) Unit digit of 7992 = 1(iv) Unit digit of 38532 = 9(v) Unit digit of 12342 = 6(vi) Unit digit of 263872 = 9(vii) Unit digit of 526982 = 4(viii) Unit digit of 998802 = 0(ix) Unit digit of 127962 = 6(x) Unit digit of 555552 = 5
Answer - 2 : -
Answer - 3 : -
(i)4312 is an odd number.(ii) 28262 is an even number.(iii) 77792 is an odd number.(iv) 820042 is an even number.
Observe the following pattern and find the missing digits.112 = 1211012 = 1020110012 = 10020011000012 = 1…2…1100000012 = ………
Answer - 4 : -
Accordingto the above pattern, we have1000012 = 10000200001100000012 = 100000020000001
Observe the following pattern and supply the missing numbers.112 = 1211012 = 10201101012 = 10203020110101012 = ……….……….2 = 10203040504030201
Answer - 5 : -
Accordingto the above pattern, we have10101012 = 10203040302011010101012 =10203040504030201
Using the given pattern, find the missing numbers.12 + 22 + 22 = 3222 + 32 + 62 = 7232 + 42 + 122 = 13242 + 52 + ….2 = 21252 + ….2 + 302 = 31262 + 72 + …..2 = ……2
Answer - 6 : -
Accordingto the given pattern, we have42 + 52 + 202 = 21252 + 62 + 302 = 31262 + 72 + 422 = 432
Answer - 7 : -
Weknow that the sum of n odd numbers = n2(i) 1 + 3 + 5 + 7 + 9 = (5)2 = 25 [∵ n = 5](ii) 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 = (10)2 = 100 [∵ n = 10](iii) 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 + 21 + 23 = (12)2 = 144 [∵ n = 12]
Answer - 8 : -
Answer - 9 : -
(i)We know that numbers between n2 and (n + 1)2 = 2nNumbers between 122 and 132 = (2n) = 2 × 12 =24(ii) Numbers between 252 and 262 = 2 × 25 = 50 (∵ n = 25)(iii) Numbers between 992 and 1002 = 2 × 99 = 198 (∵ n = 99)