MENU

RD Chapter 7 Trigonometric Ratios of Compound Angles Ex 7.2 Solutions

Question - 1 : -
Find the maximum and minimum values of each of the following trigonometrical expressions:
(i) 12 sin x тАУ 5 cos x
(ii) 12 cos x + 5 sin x + 4
(iii) 5 cos x + 3 sin (╧А/6 тАУ x) + 4
(iv) sin x тАУ cos x + 1

Answer - 1 : -

We know that the maximum value of A cos ╬▒ + B sin ╬▒ +C is C + тИЪ(A2┬а+B2),

And the minimum value is C тАУ тИЪ(a2┬а+B2).

(i)┬а12 sin x тАУ 5 cos x

Given: f(x) = 12 sin x тАУ 5 cos x

Here, A = -5, B = 12 and C = 0

тАУтИЪ((-5)2┬а+ 122) тЙд 12 sin x тАУ 5cos x тЙд┬атИЪ((-5)2┬а+122)

тАУтИЪ(25+144) тЙд 12 sin x тАУ 5 cos x тЙд┬атИЪ(25+144)

тАУтИЪ169 тЙд 12 sin x тАУ 5 cos x тЙд┬атИЪ169

-13┬атЙд┬а12 sin┬аx тАУ 5 cos┬аx тЙд 13

Hence, the maximum and minimum values of f(x) are 13and -13 respectively.

(ii)┬а12 cos x + 5 sin x + 4

Given: f(x) = 12 cos x + 5 sin x + 4

Here, A = 12, B = 5 and C = 4

4 тАУ┬атИЪ(122┬а+ 52)тЙд 12 cos x + 5 sin x + 4 тЙд 4 +┬атИЪ(122┬а+ 52)

4 тАУ┬атИЪ(144+25) тЙд 12 cos x + 5 sin x + 4 тЙд4 +┬атИЪ(144+25)

4 тАУтИЪ169 тЙд 12 cos x + 5 sin x + 4 тЙд 4 +┬атИЪ169

-9┬атЙд┬а12 cos x + 5 sin x + 4 тЙд 17

Hence, the maximum and minimum values of f(x) are -9and 17 respectively.

(iii)┬а5 cos x + 3 sin (╧А/6 тАУ x) + 4┬а

Given: f(x) = 5 cos x + 3 sin (╧А/6 тАУ x) + 4┬а

We know that, sin (A тАУ B) = sin A cos B тАУ cos A sin B

f(x) = 5 cos x + 3 sin (╧А/6 тАУ x) + 4┬а

=┬а5 cos x + 3 (sin ╧А/6 cos x тАУ cos ╧А/6 sin x) + 4

= 5 cos x + 3/2 cos x тАУ 3тИЪ3/2 sin x+ 4

= 13/2 cos x тАУ 3тИЪ3/2 sin x + 4

So, here A = 13/2, B = тАУ 3тИЪ3/2, C =4

4 тАУ┬атИЪ[(13/2)2┬а+ (-3тИЪ3/2)2]тЙд 13/2 cos x тАУ 3тИЪ3/2 sin x + 4 тЙд 4 +┬атИЪ[(13/2)2┬а+(-3тИЪ3/2)2]

4 тАУ┬атИЪ[(169/4) + (27/4)] тЙд 13/2 cos x тАУ 3тИЪ3/2 sin x+ 4 тЙд 4 +┬атИЪ[(169/4) + (27/4)]

4 тАУ 7 тЙд 13/2 cos x тАУ 3тИЪ3/2 sin x + 4 тЙд 4 + 7

-3 тЙд 13/2 cos x тАУ 3тИЪ3/2 sin x + 4 тЙд 11

Hence, the maximum and minimum values of f(x) are -3and 11 respectively.

(iv)┬аsin x тАУ cos x + 1

Given: f(x) = sin x тАУ cos x + 1

So, here A = -1, B = 1 And c = 1

1 тАУ┬атИЪ[(-1)2┬а+ 12]тЙд sin x тАУ cos x + 1 тЙд 1 +┬атИЪ[(-1)2┬а+ 12]

1 тАУ┬атИЪ(1+1) тЙд sin x тАУ cos x + 1 тЙд 1+┬атИЪ(1+1)

1 тАУ┬атИЪ2 тЙд sin x тАУ cos x + 1 тЙд 1 +┬атИЪ2

Hence, the maximum and minimum values of f(x) are 1тАУ┬атИЪ2and 1 +┬атИЪ2respectively.

Question - 2 : -
Reduce each of the following expressions to the Sine and Cosine of a single expression:
(i) тИЪ3 sin x тАУ cos x
(ii) cos x тАУ sin x
(iii) 24 cos x + 7 sin x

Answer - 2 : -

(i)┬атИЪ3 sin x тАУ cos x

Let f(x) = тИЪ3 sin x тАУ cos x

Dividing and multiplying by тИЪ((тИЪ3)2┬а+12) i.e. by 2

f(x) = 2(тИЪ3/2 sin x тАУ 1/2 cos x)

Sine expression:

f(x) = 2(cos ╧А/6 sin x тАУ sin ╧А/6 cos x) (since, тИЪ3/2 =cos ╧А/6 and 1/2 = sin ╧А/6)

We know that, sin A cos B тАУ cos A sin B = sin (A тАУ B)

f(x) = 2 sin (x тАУ ╧А/6)

Again,

f(x) = 2(тИЪ3/2 sin x тАУ 1/2 cos x)

Cosine expression:

f(x) = 2(sin ╧А/3 sin x тАУ cos ╧А/3 cos x)

We know that, cos A cos B тАУ sin A sin B = cos (A + B)

f(x) = -2 cos(╧А/3 + x)

(ii)┬аcos x тАУ sin x

Let f(x) = cos x тАУ sin x

Dividing and multiplying by тИЪ(12┬а+ 12)i.e. by тИЪ2,

f(x) = тИЪ2(1/тИЪ2 cos x тАУ 1/тИЪ2 sin x)

Sine expression:

f(x) = тИЪ2(sin ╧А/4 cos x тАУ cos ╧А/4 sin x) (since, 1/тИЪ2= sin ╧А/4 and 1/тИЪ2 = cos ╧А/4)

We know that sin A cos B тАУ cos A sin B = sin (A тАУ B)

f(x) = тИЪ2 sin (╧А/4 тАУ x)

Again,

f(x) = тИЪ2(1/тИЪ2 cos x тАУ 1/тИЪ2 sin x)

Cosine expression:

f(x) = 2(cos ╧А/4 cos x тАУ sin ╧А/4 sin x)

We know that cos A cos B тАУ sin A sin B = cos (A + B)

f(x) = тИЪ2 cos (╧А/4 + x)

(iii)┬а24 cos x + 7 sin x

Let f(x) = 24 cos x + 7 sin x

Dividing and multiplying by тИЪ((тИЪ24)2┬а+72) = тИЪ625 i.e. by 25,

f(x) = 25(24/25 cos x + 7/25 sin x)

Sine expression:

f(x) = 25(sin ╬▒ cos x + cos ╬▒ sin x)┬аwhere, sin ╬▒= 24/25 and cos ╬▒ = 7/25

We know that sin A cos B + cos A sin B = sin (A + B)

f(x) = 25 sin (╬▒ + x)

Cosine expression:

f(x) = 25(cos ╬▒ cos x + sin ╬▒ sin x)┬аwhere, cos ╬▒= 24/25 and sin ╬▒ = 7/25

We know that cos A cos B + sin A sin B = cos (A тАУ B)

f(x) = 25 cos (╬▒ тАУ x)

Question - 3 : -

Show thatSin 100o┬атАУ Sin 10o┬аis positive.

Answer - 3 : -

Let f(x) = sin 100┬░ тАУ sin 10┬░

Dividing And multiplying by тИЪ(12┬а+ 12)i.e. by тИЪ2,

f(x) = тИЪ2(1/тИЪ2 sin 100o┬атАУ 1/тИЪ2 sin 10o)

f(x) = тИЪ2(cos ╧А/4 sin (90+10)o┬атАУ sin╧А/4 sin 10o) (since, 1/тИЪ2 = cos ╧А/4 and 1/тИЪ2 = sin ╧А/4)

f(x) = тИЪ2(cos ╧А/4 cos 10o┬атАУ sin ╧А/4sin 10o)

We know that cos A cos B тАУ sin A sin B = cos (A + B)

f(x) = тИЪ2 cos (╧А/4 + 10o)

тИ┤┬аf(x) = тИЪ2 cos 55┬░

Question - 4 : - Prove that (2тИЪ3 + 3) sin x + 2тИЪ3 cos x lies between тАУ (2тИЪ3 + тИЪ15) and (2тИЪ3 + тИЪ15).

Answer - 4 : -

Let f(x) = (2тИЪ3 + 3) sin x + 2тИЪ3 cos x

Here, A = 2тИЪ3, B = 2тИЪ3 + 3 and C = 0

тАУ тИЪ[(2тИЪ3)2┬а+ (2тИЪ3 + 3)2] тЙд(2тИЪ3 + 3) sin x + 2тИЪ3 cos x тЙд тИЪ[(2тИЪ3)2┬а+ (2тИЪ3 + 3)2]

тАУ тИЪ[12+12+9+12тИЪ3] тЙд (2тИЪ3 + 3) sin x + 2тИЪ3 cos x тЙдтИЪ[12+12+9+12тИЪ3]

тАУ тИЪ[33+12тИЪ3] тЙд (2тИЪ3 + 3) sin x + 2тИЪ3 cos x тЙдтИЪ[33+12тИЪ3]

тАУ тИЪ[15+12+6+12тИЪ3] тЙд (2тИЪ3 + 3) sin x + 2тИЪ3 cos x тЙдтИЪ[15+12+6+12тИЪ3]

We know that (12тИЪ3 + 6 < 12тИЪ5) because the value ofтИЪ5 тАУ тИЪ3 is more than 0.5

So if we replace, (12тИЪ3 + 6 with 12тИЪ5) the aboveinequality still holds.

So by rearranging the above expression тИЪ(15+12+12тИЪ5)weget, 2тИЪ3 + тИЪ15

тАУ 2тИЪ3 + тИЪ15 тЙд (2тИЪ3 + 3) sin x + 2тИЪ3 cos x тЙд 2тИЪ3 + тИЪ15

Hence proved.

Free - Previous Years Question Papers
Any questions? Ask us!
×