MENU

Chapter 5 Continuity and Differentiability Ex 5.1 Solutions

Question - 1 : - Prove that the functionis continuous at

Answer - 1 : -


Therefore, f iscontinuous at x = 0

Therefore, iscontinuous at x = −3

Therefore, f iscontinuous at x = 5

Question - 2 : - Examine the continuity of the function

Answer - 2 : -


Thus, f iscontinuous at x = 3

Question - 3 : -

Examine the following functions forcontinuity.

(a)                         (b)

(c)        (d) 

Answer - 3 : - (a) The given function is

It isevident that f is defined at every real number k andits value at k is k − 5.

It is also observedthat, 

Hence, f iscontinuous at every real number and therefore, it is a continuous function.


(b) The givenfunction is

Forany real number k ≠ 5, we obtain

Hence, f iscontinuous at every point in the domain of f and therefore, itis a continuous function.


(c) The givenfunction is

Forany real number c ≠ −5, we obtain

Hence, f iscontinuous at every point in the domain of f and therefore, itis a continuous function.


(d) The given function is 

Thisfunction f is defined at all points of the real line.

Let c bea point on a real line. Then, c < 5 or c =5 or c > 5

CaseI: c < 5

Then, (c)= 5 − c

Therefore, f iscontinuous at all real numbers less than 5.

CaseII : c = 5

Then, 

Therefore, iscontinuous at x = 5

Case III: c >5

Therefore, f iscontinuous at all real numbers greater than 5.

Hence, f iscontinuous at every real number and therefore, it is a continuous function.


Question - 4 : - Prove that the function is continuous at x = n, where n isa positive integer.

Answer - 4 : -

Thegiven function is f (x) = xn

It isevident that f is defined at all positive integers, n,and its value at n is nn.

Therefore, iscontinuous at n, where n is a positive integer.

Question - 5 : -

Isthe function f defined by

continuousat x = 0? At x = 1? At x =2?

Answer - 5 : - The given function f is 

At x =0,

It isevident that f is defined at 0 and its value at 0 is 0.

Therefore, f iscontinuous at x = 0

At x =1,

is defined at 1 andits value at 1 is 1.

Theleft hand limit of f at x = 1 is,

Theright hand limit of at x = 1 is,

Therefore, f isnot continuous at x = 1

At =2,

is defined at 2 andits value at 2 is 5.

Therefore, f iscontinuous at = 2

Question - 6 : -

Findall points of discontinuity of f, where f is definedby

Answer - 6 : - The given function f is

It isevident that the given function f is defined at all the pointsof the real line.

Let c bea point on the real line. Then, three cases arise.

(i) c <2

(ii) c >2

(iii) c =2

Case (i) c <2

Therefore, f iscontinuous at all points x, such that x < 2

Case (ii) c >2

Therefore, f iscontinuous at all points x, such that x > 2

Case(iii) c = 2

Then, the left handlimit of at x = 2 is,

Theright hand limit of f at x = 2 is,

It isobserved that the left and right hand limit of f at x =2 do not coincide.

Therefore, f isnot continuous at x = 2

Hence, x =2 is the only point of discontinuity of f.

Question - 7 : -

Findall points of discontinuity of f, where f isdefined by

Answer - 7 : - The given function f is

Thegiven function f is defined at all the points of the realline.

Let c bea point on the real line.

Case I:

Therefore, f iscontinuous at all points x, such that x < −3

Case II:

Therefore, f iscontinuous at x = −3

Case III:

Therefore, f iscontinuous in (−3, 3).

Case IV:

If c =3, then the left hand limit of at x = 3 is,

Theright hand limit of at x = 3 is,

It isobserved that the left and right hand limit of f at x =3 do not coincide.

Therefore, f isnot continuous at x = 3

Case V:

Therefore, f iscontinuous at all points x, such that x > 3

Hence, x =3 is the only point of discontinuity of f.

Question - 8 : -

Findall points of discontinuity of f, where f isdefined by

Answer - 8 : - The given function f is

It is known that,

Therefore, the given function can berewritten as

Thegiven function f is defined at all the points of the realline.

Let c bea point on the real line.

Case I:

Therefore, f iscontinuous at all points x < 0

Case II:

If c =0, then the left hand limit of at x = 0 is,

Theright hand limit of at x = 0 is,

It isobserved that the left and right hand limit of f at x =0 do not coincide.

Therefore, f isnot continuous at x = 0

Case III:

Therefore, f iscontinuous at all points x, such that x > 0

Hence, x =0 is the only point of discontinuity of f.

Question - 9 : -

Findall points of discontinuity of f, where f isdefined by

Answer - 9 : - The given function f is

It is known that,

Therefore, the given function can berewritten as

Let c be any real number. Then, 

Also,

Therefore, the given function is a continuousfunction.

Hence, the givenfunction has no point of discontinuity.

Question - 10 : -

Findall points of discontinuity of f, where f isdefined by

Answer - 10 : - The given function f is

Thegiven function f is defined at all the points of the realline.

Let c bea point on the real line.

Case I:

Therefore, f iscontinuous at all points x, such that x < 1

Case II:

Theleft hand limit of at x = 1 is,

Theright hand limit of at x = 1 is,

Therefore, f iscontinuous at x = 1

Case III:

Therefore, f iscontinuous at all points x, such that x > 1

Hence,the given function has no point of discontinuity.

Free - Previous Years Question Papers
Any questions? Ask us!
×