MENU

Chapter 6 Application of Derivatives Ex 6.5 Solutions

Question - 1 : -

Find the maximum and minimum values, if any, of thefollowing functions given by

(i) f(x) =(2x − 1)2 + 3       (ii) f(x) =9x2 +12x + 2

(iii) f(x) =−(x − 1)2 + 10   (iv) g(x)= x3 +1

Answer - 1 : -

(i) The given function is f(x) =(2x − 1)2 + 3.

It can be observed that (2− 1)2 ≥ 0 for every x  R.

Therefore, f(x) =(2x − 1)2 + 3 ≥ 3 forevery x  R.

The minimum value of f isattained when 2x − 1 = 0.

2x − 1 = 0  
Minimum value of f == 3

Hence, function f doesnot have a maximum value.

(ii) The given function is f(x) =9x2 +12x + 2 = (3x + 2)2 −2.

It can be observed that (3x +2)2 ≥ 0 for every x  R.

Therefore, f(x) =(3x + 2)2 − 2 ≥ −2 forevery x  R.

The minimum value of f isattained when 3x + 2 = 0.

3x + 2 = 0  
Minimum value of f =

Hence, function f doesnot have a maximum value.

(iii) The given function is f(x) = − (x − 1)2 +10.

It can be observed that (x −1)2 ≥ 0 for every x  R.

Therefore, f(x) =− (x − 1)2 + 10 ≤ 10 forevery x  R.

The maximum value of f isattained when (x − 1) = 0.

(x − 1) = 0  x = 1

Maximum value of f = f(1)= − (1 − 1)2 + 10 = 10

Hence, function f doesnot have a minimum value.

(iv) The given function is g(x)= x3 +1.

Hence, function g neitherhas a maximum value nor a minimum value.

Question - 2 : -

Find the maximum and minimum values, if any, of thefollowing functions given by

(i) f(x) = |x +2| − 1 (ii) g(x) = − |x + 1| + 3

(iii) h(x) = sin(2x)+ 5 (iv) f(x) = |sin 4x + 3|

(v) h(x) = +4, x (−1, 1)

Answer - 2 : - (i) f(x)= 

We know that for every x  R.
Therefore, f(x) =  for every x  R.
The minimum value of f is attainedwhen .
Minimum value of f = f(−2)

Hence, function f does nothave a maximum value.

(ii) g(x) =
We know that for every x  R.
Therefore, g(x) =  for every x  R.
The maximum value of g is attainedwhen
Maximum value of g = g(−1)= 

Hence, function g does nothave a minimum value.

(iii) h(x) = sin2x +5

We know that − 1 ≤ sin 2x ≤ 1.

− 1 + 5 ≤ sin 2x + 5 ≤ 1 + 5

4 ≤ sin 2x + 5 ≤ 6

Hence, the maximum and minimum valuesof h are 6 and 4 respectively.

(iv) f(x) =

We know that −1 ≤ sin 4x ≤ 1.

2 ≤ sin 4+ 3 ≤ 4

2 ≤≤ 4

Hence, the maximum and minimum valuesof are 4 and 2 respectively.

(v) h(x) = x +1, x  (−1, 1)

Here, if a point x0 isclosest to −1, then we find  for all x0  (−1, 1).
Also, if x1 isclosest to 1, then   for all x1  (−1, 1).

Hence, function h(x) hasneither maximum nor minimum value in (−1, 1).

Question - 3 : -

Find the local maxima and local minima, if any, of thefollowing functions. Find also the local maximum and the local minimum values,as the case may be:

(i). f(x)= x2 (ii). g(x)= x3 −3x (iii). h(x) =sinx +cosx, 0< (iv). f(x) =sinx − cos x, 0 < x <2π
(v). f(x) = x3 −6x2 +9x +15
(vi). 
(vii). 
(viii). 

Answer - 3 : -

(i) f(x)= x2

Thus, x =0 is the only critical point which could possibly be the point of local maximaor local minima of f.

We have, which is positive.

Therefore, by second derivative test, x =0 is a point of local minima and local minimum value of f at x =0 is f(0) = 0.

(ii) g(x)= x3 −3x

By second derivative test, = 1 is a point of local minima and local minimum valueof g at x = 1 is g(1)= 13 − 3 = 1 − 3 = −2. However,

x = −1 is a point of local maxima and local maximumvalue of g at

x = −1 is g(1) = (−1)3 −3 (− 1) = − 1 + 3 = 2.

(iii) h(x) =sinx +cosx, 0< x <

Therefore, by secondderivative test, is a point of localmaxima and the local maximum value of h at  is 

Therefore, by secondderivative test, is a point of localmaxima and the local maximum value of at 

is

 However, is a point of localminima and the local minimum value of f atis 


(v) f(x)= x3 −6x2 +9x + 15

Therefore, by second derivative test, x =1 is a point of local maxima and the local maximum value of f at = 1 is f(1) = 1 − 6 + 9 + 15 =19. However, x = 3 is a point of local minima and the local minimumvalue of at x = 3 is f(3) = 27 − 54 + 27 + 15 = 15.

(vi) 

Since x >0, we take x = 2.

Therefore, by secondderivative test, x = 2 is a point of local minima and the localminimum value of g at x =2 is g(2) =

(vii) 

Now, for values closeto x = 0 and to the left of 0,Also, for values closeto x = 0 and to the right of 0,

Therefore, by firstderivative test, x = 0 is a point of local maxima and the localmaximum value of

(viii) 

Therefore, by secondderivative test,is a point of local maximaand the local maximum value of f at  is


Question - 4 : -

Prove that the following functions do not have maxima orminima:

(i) f(x) = ex (ii) g(x)= logx

(iii) h(x) = x3 + x2 + x +1

Answer - 4 : -

(i) We have,

f(x)= ex

Now, if . But, the exponential function can neverassume 0 for any value of x.

Therefore, there does notexist c R such that

Hence, function f does nothave maxima or minima.


(ii) We have,

g(x)= log x

Therefore, there does notexist c R such that.

Hence, function g does nothave maxima or minima.


(iii) We have,

h(x)= x3 + x2 + x +1

Now,

h(x)= 0 3x2 +2x + 1 = 0  

Therefore, there does notexist c R such that.

Hence, function h does nothave maxima or minima.

Question - 5 : -

Find the absolute maximum value and the absolute minimumvalue of the following functions in the given intervals:

(i)  (ii) 
(iii)   (iv) 

Answer - 5 : -

(i) The given function is f(x)= x3.

Then, we evaluate the value of f atcritical point x = 0 and at end points of the interval [−2,2].

f(0) = 0

f(−2) = (−2)3 =−8

f(2) = (2)3 =8

Hence, we can conclude that the absolutemaximum value of f on [−2, 2] is 8 occurring at x =2. Also, the absolute minimum value of f on [−2, 2] is −8occurring at x = −2.

(ii) The given function is f(x)= sin x + cos x.

Then, we evaluate the valueof f at critical point and at the end points of the interval[0, π].

Hence, we can conclude thatthe absolute maximum value of f on [0, π] is occurring atand the absolute minimum value of f on[0, π] is −1 occurring at x = π.

(iii) The given function is

Then, we evaluate the valueof f at critical point x = 4 and at the endpoints of the interval.
Hence, we can conclude thatthe absolute maximum value of f onis 8 occurring at x =4 and the absolute minimum value of f on is −10 occurring at x = −2.
(iv) The given function is.

Now,

 2(x − 1) = 0  x = 1

Then, we evaluate the value of f atcritical point x = 1 and at the end points of the interval[−3, 1].

Hence, we can conclude that the absolutemaximum value of f on [−3, 1] is 19 occurring at x =−3 and the minimum value of f on [−3, 1] is 3 occurringat x = 1.

Question - 6 : -

Find the maximum profit that a company can make, if theprofit function is given by

p(x)= 41 − 72− 18x2

Answer - 6 : - The profit function isgiven as p(x) = 41 − 72− 18x2.

By secondderivative test, x=-2 is the point oflocal maxima of p.

Hence, the maximum profit that the company can make is113 units.

Question - 7 : -

Find both the maximum value and the minimum value of

3x4 − 8x3 +12x2 − 48x + 25 on the interval [0, 3]

Answer - 7 : -

Let f(x) = 3x4 −8x3 + 12x2 − 48x +25.

Now,gives x = 2 or x2+ 2= 0 for which there are no real roots.

Therefore, we consider only x =2 [0, 3].

Now, we evaluate the value of atcritical point x = 2 and at the end points of the interval [0,3].

Hence, we can conclude that the absolutemaximum value of on [0, 3] is 25 occurring at =0 and the absolute minimum value of f at [0, 3] is − 39occurring at x = 2.

Question - 8 : -

At what points in the interval [0, 2π], doesthe function sin 2x attain its maximum value?

Answer - 8 : -

Let f(x) = sin 2x.

Then, we evaluate thevalues of f at critical pointsand at the end points of the interval [0,2π].

Hence, we can conclude thatthe absolute maximum value of f on [0, 2π] is occurring atand

Question - 9 : -

What is the maximum value of the functionsin x + cos x?

Answer - 9 : -

Let f(x) = sin x +cos x.

Now, will be negative when(sin x + cos x) is positive i.e., when sin x andcos are both positive. Also, we know that sin x andcos x both are positive in the first quadrant. Then, will be negative when.

Thus, we consider.
By second derivative test, f will bethe maximum atand the maximum valueof f is.

Question - 10 : -

Find the maximum value of 2x3 −24x + 107 in the interval [1, 3]. Find the maximum value of thesame function in [−3, −1].

Answer - 10 : -

Let f(x) = 2x3 −24x + 107.

We first consider the interval [1, 3].

Then, we evaluate the value of f atthe critical point x = 2 [1, 3] andat the end points of the interval [1, 3].

f(2) = 2(8)− 24(2) + 107 = 16 − 48 + 107 = 75

f(1) = 2(1)− 24(1) + 107 = 2 − 24 + 107 = 85

f(3) = 2(27)− 24(3) + 107 = 54 − 72 + 107 = 89

Hence, the absolute maximum value of f(x)in the interval [1, 3] is 89 occurring at x = 3.

Next, we consider the interval [−3, −1].

Evaluate the value of f atthe critical point x = −2 [−3, −1]and at the end points of the interval [1, 3].

f(−3) = 2(−27) − 24(−3) + 107 = −54 + 72 + 107 = 125

f(−1) =2(−1) − 24 (−1) + 107 = −2 + 24 + 107 = 129

f(−2) =2(−8) − 24 (−2) + 107 = −16 + 48 + 107 = 139

Hence, the absolute maximum value of f(x)in the interval [−3, −1] is 139 occurring at x = −2.

×