MENU
Question -

Find the absolute maximum value and the absolute minimumvalue of the following functions in the given intervals:

(i)  (ii) 
(iii)   (iv) 



Answer -

(i) The given function is f(x)= x3.

Then, we evaluate the value of f atcritical point x = 0 and at end points of the interval [−2,2].

f(0) = 0

f(−2) = (−2)3 =−8

f(2) = (2)3 =8

Hence, we can conclude that the absolutemaximum value of f on [−2, 2] is 8 occurring at x =2. Also, the absolute minimum value of f on [−2, 2] is −8occurring at x = −2.

(ii) The given function is f(x)= sin x + cos x.

Then, we evaluate the valueof f at critical point and at the end points of the interval[0, π].

Hence, we can conclude thatthe absolute maximum value of f on [0, π] is occurring atand the absolute minimum value of f on[0, π] is −1 occurring at x = π.

(iii) The given function is

Then, we evaluate the valueof f at critical point x = 4 and at the endpoints of the interval.
Hence, we can conclude thatthe absolute maximum value of f onis 8 occurring at x =4 and the absolute minimum value of f on is −10 occurring at x = −2.
(iv) The given function is.

Now,

 2(x − 1) = 0  x = 1

Then, we evaluate the value of f atcritical point x = 1 and at the end points of the interval[−3, 1].

Hence, we can conclude that the absolutemaximum value of f on [−3, 1] is 19 occurring at x =−3 and the minimum value of f on [−3, 1] is 3 occurringat x = 1.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×