Chapter 5  Continuity and Differentiability Ex 5.1 Solutions
Question - 11 : - Find allpoints of discontinuity of f, where f is definedby
Answer - 11 : - The given function f is
Thegiven function f is defined at all the points of the realline.
Let c bea point on the real line.
Case I:


Therefore, f iscontinuous at all points x, such that x < 2
Case II:


Therefore, f iscontinuous at x = 2
Case III:

Therefore, f iscontinuous at all points x, such that x > 2
Thus,the given function f is continuous at every point on the realline.
Hence, f hasno point of discontinuity.
Findall points of discontinuity of f, where f isdefined by

Answer - 12 : - The given function f is  
 
Thegiven function f is defined at all the points of the realline.
Let c bea point on the real line.
Case I:

Therefore, f iscontinuous at all points x, such that x < 1
Case II:
If c =1, then the left hand limit of f at x = 1 is,

Theright hand limit of f at x = 1 is,

It isobserved that the left and right hand limit of f at x =1 do not coincide.
Therefore, f isnot continuous at x = 1
Case III:


Therefore, f iscontinuous at all points x, such that x > 1
Thus,from the above observation, it can be concluded that x = 1 isthe only point of discontinuity of f.
Is the function defined by

a continuousfunction?
Answer - 13 : - The given function is
Thegiven function f is defined at all the points of the realline.
Let c bea point on the real line.
Case I:


Therefore, f iscontinuous at all points x, such that x < 1
Case II:

Theleft hand limit of f at x = 1 is,

Theright hand limit of f at x = 1 is,

It isobserved that the left and right hand limit of f at x =1 do not coincide.
Therefore, f isnot continuous at x = 1
Case III:


Therefore, f iscontinuous at all points x, such that x > 1
Thus,from the above observation, it can be concluded that x = 1 isthe only point of discontinuity of f.
Discussthe continuity of the function f, where f isdefined by

Answer - 14 : - The given function is
The given function is defined at all pointsof the interval [0, 10].
Let c bea point in the interval [0, 10].
Case I:

Therefore, f iscontinuous in the interval [0, 1).
Case II:

Theleft hand limit of f at x = 1 is,
Theright hand limit of f at x = 1 is,

It isobserved that the left and right hand limits of f at x =1 do not coincide.
Therefore, f isnot continuous at x = 1
Case III:

Therefore, f iscontinuous at all points of the interval (1, 3).
Case IV:

Theleft hand limit of f at x = 3 is,

Theright hand limit of f at x = 3 is,

It isobserved that the left and right hand limits of f at x =3 do not coincide.
Therefore, f isnot continuous at x = 3
Case V:


Therefore, f iscontinuous at all points of the interval (3, 10].
Hence, f isnot continuous at x = 1 and x = 3
Discussthe continuity of the function f, where f isdefined by

Answer - 15 : - The given function is
The given function is defined at all pointsof the real line.
Let c bea point on the real line.
Case I:

Therefore, f iscontinuous at all points x, such that x < 0
Case II:

Theleft hand limit of f at x = 0 is,

Theright hand limit of f at x = 0 is,

Therefore, f iscontinuous at x = 0
Case III:

Therefore, f iscontinuous at all points of the interval (0, 1).
Case IV:

Theleft hand limit of f at x = 1 is,

Theright hand limit of f at x = 1 is,

It isobserved that the left and right hand limits of f at x =1 do not coincide.
Therefore, f isnot continuous at x = 1
Case V:

Therefore, f iscontinuous at all points x, such that x > 1
Hence, f isnot continuous only at x = 1
Discussthe continuity of the function f, where f isdefined by

Answer - 16 : - The given function f is
The given function is defined at all pointsof the real line.
Let c bea point on the real line.
Case I:

Therefore, f iscontinuous at all points x, such that x < −1
Case II:

Theleft hand limit of f at x = −1 is,

Theright hand limit of f at x = −1 is,


Therefore, f iscontinuous at x = −1
Case III:

Therefore, f iscontinuous at all points of the interval (−1, 1).
Case IV:

Theleft hand limit of f at x = 1 is,

Theright hand limit of f at x = 1 is,


Therefore, f iscontinuous at x = 2
Case V:


Therefore, f iscontinuous at all points x, such that x > 1
Thus,from the above observations, it can be concluded that f iscontinuous at all points of the real line.
Findthe relationship between a and b so that thefunction f defined by

iscontinuous at x = 3.
Answer - 17 : - The given function f is
If f iscontinuous at x = 3, then

Therefore, from (1), we obtain

Therefore, the required relationship is given by,
For what value of  is the function defined by
is the function defined by

continuousat x = 0? What about continuity at x = 1?
Answer - 18 : - 
The given function f is
 If f iscontinuous at x = 0, then

Therefore,there is no value of λ for which f is continuous at x =0
At x =1,
f (1) = 4x +1 = 4 × 1 + 1 = 5

Therefore,for any values of λ, f is continuous at x = 1
 is discontinuous at all integral point. Here
is discontinuous at all integral point. Here  denotesthe greatest integer less than or equal to x.
denotesthe greatest integer less than or equal to x.
Answer - 19 : - The given function is
It isevident that g is defined at all integral points.
Let n bean integer.
Then,

Theleft hand limit of f at x = n is,

Theright hand limit of f at x = n is,

It isobserved that the left and right hand limits of f at x = n donot coincide.
Therefore, f isnot continuous at x = n
Hence, g isdiscontinuous at all integral points.
 continuousat x = π?
continuousat x = π?
Answer - 20 : - The given function is
It isevident that f is defined at x = π.


Therefore,the given function f is continuous at x = π