MENU

RD Chapter 14 Quadratic Equations Ex 14.1 Solutions

Question - 11 : -

x2 – x + 1 = 0

Answer - 11 : -

Given: x2 –x + 1 = 0

x2 – x+ ¼ + ¾ = 0

x2 – 2(x) (1/2) + (1/2)2 + ¾ = 0

(x – 1/2)2 +¾ = 0 [Since, (a + b)2 = a2 + 2ab + b2]

(x – 1/2)2 +¾ × 1 = 0

We know, i2 =–1  1 = –i2

By substituting 1 = –i2 inthe above equation, we get

(x – ½)2 +¾ (-1)2 = 0

(x – ½)2 +¾ (-i)2 = 0

(x – ½)2 –(√3i/2)2 = 0

[Byusing the formula, a2 – b2 = (a + b) (a – b)]

(x – ½ + √3i/2) (x – ½ – √3i/2) = 0

(x – ½ + √3i/2) = 0 or (x – ½ – √3i/2) = 0

x = 1/2 – √3i/2 or x = 1/2 + √3i/2

The roots of thegiven equation are 1/2 + √3i/2,1/2 – √3i/2

Question - 12 : -

17x2 – 8x + 1 = 0

Answer - 12 : -

Given: 17x2 –8x + 1 = 0

We shall applydiscriminant rule,

Where, x = (-b ±√(b2 – 4ac))/2a

Here, a = 17, b = -8,c = 1

So,

x = (-(-8) ±√(-82 – 4(17)(1)))/ 2(17)

= (8 ± √(64-68))/34

= (8 ± √(-4))/34

= (8 ± √4(-1))/34

We have i2 =–1

By substituting –1 = i2 inthe above equation, we get

x = (8 ± √(2i)2)/34

= (8 ± 2i)/34

= 2(4±i)/34

= (4±i)/17

x = 4/17 ± i/17

The roots of thegiven equation are 4/17 ± i/17

Free - Previous Years Question Papers
Any questions? Ask us!
×