MENU
Question -

Find the magnitude, in radians and degrees, of the interior angle of a regular:
(i) Pentagon (ii) Octagon (iii) Heptagon (iv) Duodecagon.



Answer -

We know that the sum of the interior anglesof a polygon = (n тАУ 2) ╧А

And each angle ofpolygon = sum of interior angles of polygon / number of sides┬а

Now, let uscalculate the magnitude of

(i)┬аPentagon

Number of sides inpentagon = 5

Sum of interiorangles of pentagon = (5 тАУ 2) ╧А = 3╧А

тИ┤┬аEachangle of pentagon = 3╧А/5 ├Ч 180o/ ╧А =108o


(ii)┬аOctagon

Number of sides inoctagon = 8

Sum of interiorangles of octagon = (8 тАУ 2) ╧А = 6╧А

тИ┤┬аEachangle of octagon = 6╧А/8 ├Ч 180o/ ╧А =135o┬а


(iii)┬аHeptagon

Number of sides inheptagon = 7

Sum of interiorangles of heptagon = (7 тАУ 2) ╧А = 5╧А

тИ┤┬аEachangle of heptagon = 5╧А/7 ├Ч 180o/ ╧А =900o/7 = 128o┬а34тА▓17тАЭ ┬а


(iv)┬аDuodecagon

Number of sides induodecagon = 12

Sum of interiorangles of duodecagon = (12 тАУ 2) ╧А = 10╧А

тИ┤┬аEachangle of duodecagon = 10╧А/12 ├Ч 180o/╧А = 150o

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×