MENU
Question -

(sin 3x +sin x) sin x + (cos 3x – cos x) cos x = 0



Answer -

Let us consider LHS:

(sin 3x + sin x) sin x + (cos 3x – cos x) cos x

= (sin 3x) (sin x) + sin2 x + (cos 3x)(cos x) – cos2 x

= [(sin 3x) (sin x) + (cos 3x) (cos x)] + (sin2 x– cos2 x)

= [(sin 3x) (sin x) + (cos 3x) (cos x)] – (cos2 x– sin2 x)

= cos (3x – x) – cos 2x

We know, cos 2x = cos2 x –sin2 x

cos A cos B + sin A sin B = cos(A – B)

So,

= cos 2x – cos 2x

= 0

= RHS

Hence Proved.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×