Question -
Answer -
Let us consider LHS:
sin 2x / (1 + cos 2x)
We know that cos 2x = 1– 2 sin2 x
= 2 cos2 x – 1
Sin 2x = 2 sin x cos x
So,
sin 2x / (1 + cos 2x) =[2 sin x cos x / (1 + (2cos2x – 1))]
= [2 sin x cos x / (1 +2cos2 x – 1)]
= [2 sin x cos x / 2 cos2 x]
= sin x/cos x
= tan x
= RHS
Hence proved.