MENU
Question -

cos6 x– sin6 x = cos 2x (1 – 1/4 sin2 2x)



Answer -

Let us consider LHS:

cos6 x – sin6 x

We know, (a + b) 2 = a2 +b2 + 2ab

a3 – b3 = (a – b) (a2 +b2 + ab)

So,

cos6 x – sin6 x = (cos2 x)3 –(sin2 x)3

= (cos2 x – sin2 x)(cos4 x + sin4 x + cos2 x sin2 x)

We know, cos 2x = cos2 x – sin2 x

So,

= cos 2x [(cos2 x) 2 +(sin2 x) 2 + 2 cos2 x sin2 x– cos2 x sin2 x]

= cos 2x [(cos2 x) 2 +(sin2 x) 2 – 1/4 × 4 cos2 xsin2 x]

We know, sin2 x + cos2 x= 1

So,

= cos 2x [(1)2 – 1/4 × (2 cos x sin x) 2]

We know, sin 2x = 2 sin x cos x

So,

= cos 2x [1 – 1/4 × (sin 2x) 2]

= cos 2x [1 – 1/4 × sin2 2x]

= RHS

Hence proved.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×