Question -
Answer -
Let us consider LHS:
3(sin x – cos x) 4 + 6 (sin x +cos x) 2 + 4 (sin6 x + cos6 x)
We know, (a + b)2 = a2 +b2 + 2ab
(a – b)2 = a2 + b2 –2ab
a3 + b3 = (a + b) (a2 +b2 – ab)
So,
3(sin x – cos x) 4 + 6 (sin x +cos x) 2 + 4 (sin6 x + cos6 x)= 3{(sin x – cos x) 2}2 + 6 {(sin x)2 +(cos x)2 + 2 sin x cos x)} + 4 {(sin2 x)3 +(cos2 x)3}
= 3{(sin x) 2 + (cos x)2 –2 sin x cos x)}2 + 6 (sin2 x + cos2 x+ 2 sin x cos x) + 4{(sin2 x + cos2 x) (sin4 x+ cos4 x – sin2 x cos2 x)}
= 3(1 – 2 sin x cos x) 2 + 6 (1 +2 sin x cos x) + 4{(1) (sin4 x + cos4 x – sin2 xcos2 x)}
We know, sin2 x + cos2 x= 1
So,
= 3{12 + (2 sin x cos x) 2 –4 sin x cos x} + 6 (1 + 2 sin x cos x) + 4{(sin2 x)2 +(cos2 x)2 + 2 sin2 x cos2 x– 3 sin2 x cos2 x)}
= 3{1 + 4 sin2 x cos2 x– 4 sin x cos x} + 6 (1 + 2 sin x cos x) + 4{(sin2 x + cos2 x) 2 –3 sin2 x cos2 x)}
= 3 + 12 sin2 x cos2 x– 12 sin x cos x + 6 + 12 sin x cos x + 4{(1)2 – 3 sin2 xcos2 x)}
= 9 + 12 sin2 x cos2 x+ 4(1 – 3 sin2 x cos2 x)
= 9 + 12 sin2 x cos2 x+ 4 – 12 sin2 x cos2 x
= 13
= RHS
Hence proved.