MENU
Question -

Provethat:

(i) sin65o + cos 65o = √2 cos 20o

(ii) sin47o + cos 77o = cos 17o



Answer -

(i) sin 65o + cos 65o = √2cos 20o

Let us consider LHS:

sin 65o + cos 65o =sin 65o + sin (90o – 65o)

= sin 65o + sin 25o

By using the formula,

sin A + sin B = 2 sin (A+B)/2 cos (A-B)/2

sin 65o + sin 25o = 2sin (65o + 25o)/2 cos (65o – 25o)/2

= 2 sin 90o/2 cos 40o/2

= 2 sin 45o cos 20o

= 2 × 1/√2 × cos 20o

= √2 cos 20o

= RHS

Hence proved.

(ii) sin 47o + cos 77o =cos 17o

Let us consider LHS:

sin 47o + cos 77o =sin 47o + sin (90o – 77o)

= sin 47o + sin 13o

By using the formula,

sin A + sin B = 2 sin (A+B)/2 cos (A-B)/2

sin 47o + sin 13o = 2sin (47o + 13o)/2 cos (47o – 13o)/2

= 2 sin 60o/2 cos 34o/2

= 2 sin 30o cos 17o

= 2 × 1/2 × cos 17o

= cos 17o

= RHS

Hence proved.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×