MENU
Question -

Provethat:

(i) cos55° + cos 65° + cos 175° = 0

(ii) sin50° – sin 70° + sin 10° = 0

(iii) cos80° + cos 40° – cos 20° = 0

(iv) cos20° + cos 100° + cos 140° = 0

(v) sin5π/18 – cos 4π/9 = √3 sin π/9

(vi) cosπ/12 – sin π/12 = 1/√2

(vii) sin80° – cos 70° = cos 50°

(viii)sin 51° + cos 81° = cos 21°



Answer -

(i) cos 55° + cos 65° + cos 175° = 0

Let us consider LHS:

cos 55° + cos 65° + cos 175°

By using the formula,

cos A + cos B = 2 cos (A+B)/2 cos (A-B)/2

cos 55° + cos 65° + cos 175° = 2 cos (55o +65o)/2 cos (55o – 65o) + cos (180o –5o)

= 2 cos 120o/2 cos (-10o)/2 –cos 5o (since, {cos (180° – A) = – cos A})

= 2 cos 60° cos (-5°) – cos 5° (since, {cos (-A) = cosA})

= 2 × 1/2 × cos 5o – cos 5o

= 0

= RHS

Hence Proved.

(ii) sin 50° – sin 70° + sin 10° = 0

Let us consider LHS:

sin 50° – sin 70° + sin 10°

By using the formula,

sin A – sin B = 2 cos (A+B)/2 sin (A-B)/2

sin 50° – sin 70° + sin 10° = 2 cos (50o +70o)/2 sin (50o – 70o) + sin 10o

= 2 cos 120o/2 sin (-20o)/2 +sin 10o

= 2 cos 60o (- sin 10o) +sin 10o [since,{sin (-A) = -sin (A)}]

= 2 × 1/2 × – sin 10o + sin 10o

= 0

= RHS

Hence proved.

(iii) cos 80° + cos 40° – cos 20° = 0

Let us consider LHS:

cos 80° + cos 40° – cos 20°

By using the formula,

cos A + cos B = 2 cos (A+B)/2 cos (A-B)/2

cos 80° + cos 40° – cos 20° = 2 cos (80o +40o)/2 cos (80o – 40o) – cos 20o

= 2 cos 120o/2 cos 40o/2 – cos20o

= 2 cos 60° cos 20o – cos 20°

= 2 × 1/2 × cos 20o – cos 20o

= 0

= RHS

Hence Proved.

(iv) cos 20° + cos 100° + cos 140° = 0

Let us consider LHS:

cos 20° + cos 100° + cos 140°

By using the formula,

cos A + cos B = 2 cos (A+B)/2 cos (A-B)/2

cos 20° + cos 100° + cos 140° = 2 cos (20o +100o)/2 cos (20o – 100o) + cos (180o –40o)

= 2 cos 120o/2 cos (-80o)/2 –cos 40o (since, {cos (180° – A) = – cos A})

= 2 cos 60° cos (-40°) – cos 40° (since, {cos (-A) =cos A})

= 2 × 1/2 × cos 40o – cos 40o

= 0

= RHS

Hence Proved.

(v) sin 5π/18 – cos 4π/9 = √3 sin π/9

Let us consider LHS:

sin 5π/18 – cos 4π/9 = sin 5π/18 – sin (π/2 – 4π/9)(since, cos A = sin (90o – A))

= sin 5π/18 – sin (9π – 8π)/18

= sin 5π/18 – sin π/18

By using the formula,

sin A – sin B = 2 cos (A+B)/2 sin (A-B)/2

= 2 cos (6π/36) sin (4π/36)

= 2 cos π/6 sin π/9

= 2 cos 30o sin π/9

= 2 × √3/2 × sin π/9

= √3 sin π/9

= RHS

Hence proved.

(vi) cos π/12 – sin π/12 = 1/√2

Let us consider LHS:

cos π/12 – sin π/12 = sin (π/2 – π/12) – sin π/12(since, cos A = sin(90o – A))

= sin (6π – 5π)/12 – sin π/12

= sin 5π/12 – sin π/12

By using the formula,

sin A – sin B = 2 cos (A+B)/2 sin (A-B)/2

= 2 cos (6π/24) sin (4π/24)

= 2 cos π/4 sin π/6

= 2 cos 45o sin 30o

= 2 × 1/√2 × 1/2

= 1/√2

= RHS

Hence proved.

(vii) sin 80° – cos 70° = cos 50°

sin 80° = cos 50° + cos 70o

So, now let us consider RHS

cos 50° + cos 70o

By using the formula,

cos A + cos B = 2 cos (A+B)/2 cos (A-B)/2

cos 50° + cos 70o = 2 cos (50o +70o)/2 cos (50o – 70o)/2

= 2 cos 120o/2 cos (-20o)/2

= 2 cos 60o cos (-10o)

= 2 × 1/2 × cos 10o (since, cos (-A) =cos A)

= cos 10o

= cos (90° – 80°)

= sin 80° (since, cos (90° – A) = sin A)

= LHS

Hence Proved.

(viii) sin 51° + cos 81° = cos 21°

Let us consider LHS:

sin 51° + cos 81° = sin 51o + sin (90o –81o)

= sin 51o + sin 9o (since,sin (90° – A) = cos A)

By using the formula,

sin A + sin B = 2 sin (A+B)/2 cos (A-B)/2

sin 51o + sin 9o = 2sin (51o + 9o)/2 cos (51o – 9o)/2

= 2 sin 60o/2 cos 42o/2

= 2 sin 30o cos 21o

= 2 × 1/2 × cos 21o

= cos 21o

= RHS

Hence proved.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×