MENU
Question -

Provethat :
(i) sin 38°+ sin 22° = sin 82°

(ii) cos100° + cos 20° = cos 40°

(iii) sin50° + sin 10° = cos 20°

(iv) sin23° + sin 37° = cos 7°

(v) sin105° + cos 105° = cos 45°

(vi) sin40° + sin 20° = cos 10°



Answer -

(i) sin 38° + sin 22° = sin 82°

Let us consider LHS:

sin 38° + sin 22°

By using the formula,

sin A + sin B = 2 sin (A+B)/2 cos (A-B)/2

sin 38° + sin 22° = 2 sin (38o + 22o)/2cos (38o – 22o)/2

= 2 sin 60o/2 cos 16o/2

= 2 sin 30o cos 8o

= 2 × 1/2 × cos 8o

= cos 8o

= cos (90° – 82°)

= sin 82° (since, {cos (90° – A) = sin A})

= RHS

Hence Proved.

(ii) cos 100° + cos 20° = cos 40°

Let us consider LHS:

cos 100° + cos 20°

By using the formula,

cos A + cos B = 2 cos (A+B)/2 cos (A-B)/2

cos 100° + cos 20° = 2 cos (100o + 20o)/2cos (100o – 20o)/2

= 2 cos 120o/2 cos 80o/2

= 2 cos 60o cos 4o

= 2 × 1/2 × cos 40o

= cos 40o

= RHS

Hence Proved.

(iii) sin 50° + sin 10° = cos 20°

Let us consider LHS:

sin 50° + sin 10°

By using the formula,

sin A + sin B = 2 sin (A+B)/2 cos (A-B)/2

sin 50° + sin 10° = 2 sin (50o + 10o)/2cos (50o – 10o)/2

= 2 sin 60o/2 cos 40o/2

= 2 sin 30o cos 20o

= 2 × 1/2 × cos 20o

= cos 20o

= RHS

Hence Proved.

(iv) sin 23° + sin 37° = cos 7°

Let us consider LHS:

sin 23° + sin 37°

By using the formula,

sin A + sin B = 2 sin (A+B)/2 cos (A-B)/2

sin 23° + sin 37° = 2 sin (23o + 37o)/2cos (23o – 37o)/2

= 2 sin 60o/2 cos -14o/2

= 2 sin 30o cos -7o

= 2 × 1/2 × cos -7o

= cos 7o (since, {cos (-A) = cos A})

= RHS

Hence Proved.

(v) sin 105° + cos 105° = cos 45°

Let us consider LHS: sin 105° + cos 105°

sin 105° + cos 105° = sin 105o + sin(90o – 105o) [since, {sin (90° – A) = cos A}]

= sin 105o + sin (-15o)

= sin 105o – sin 15o [{sin(-A)= – sin A}]

By using the formula,

Sin A – sin B = 2 cos (A+B)/2 sin (A-B)/2

sin 105o – sin 15o = 2cos (105o + 15o)/2 sin (105o – 15o)/2

= 2 cos 120o/2 sin 90o/2

= 2 cos 60o sin 45o

= 2 × 1/2 × 1/2

= 1/2

= cos 45o

= RHS

Hence proved.

(vi) sin 40° + sin 20° = cos 10°

Let us consider LHS:

sin 40° + sin 20°

By using the formula,

sin A + sin B = 2 sin (A+B)/2 cos (A-B)/2

sin 40° + sin 20° = 2 sin (40o + 20o)/2cos (40o – 20o)/2

= 2 sin 60o/2 cos 20o/2

= 2 sin 30o cos 10o

= 2 × 1/2 × cos 10o

= cos 10o

= RHS

Hence Proved.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×