MENU
Question -

Express each of the following as the product of sines and cosines:
(i) sin 12x + sin 4x
(ii) sin 5x – sin x
(iii) cos 12x + cos 8x
(iv) cos 12x – cos 4x
(v) sin 2x + cos 4x



Answer -

(i) sin 12x + sin 4x

By using the formula,

sin A + sin B = 2 sin (A+B)/2 cos (A-B)/2

sin 12x + sin 4x = 2 sin (12x + 4x)/2 cos (12x – 4x)/2

= 2 sin 16x/2 cos 8x/2

= 2 sin 8x cos 4x

(ii) sin 5x – sin x

By using the formula,

sin A – sin B = 2 cos (A+B)/2 sin (A-B)/2

sin 5x – sin x = 2 cos (5x + x)/2 sin (5x – x)/2

= 2 cos 6x/2 sin 4x/2

= 2 cos 3x sin 2x

(iii) cos 12x + cos 8x

By using the formula,

cos A + cos B = 2 cos (A+B)/2 cos (A-B)/2

cos 12x + cos 8x = 2 cos (12x + 8x)/2 cos (12x – 8x)/2

= 2 cos 20x/2 cos 4x/2

= 2 cos 10x cos 2x

(iv) cos 12x – cos 4x

By using the formula,

cos A – cos B = -2 sin (A+B)/2 sin (A-B)/2

cos 12x – cos 4x = -2 sin (12x + 4x)/2 sin (12x –4x)/2

= -2 sin 16x/2 sin 8x/2

= -2 sin 8x sin 4x

(v) sin 2x + cos 4x

sin 2x + cos 4x = sin 2x + sin (90o –4x)

By using the formula,

sin A + sin B = 2 sin (A+B)/2 cos (A-B)/2

sin 2x + sin (90o – 4x) = 2 sin (2x +90o – 4x)/2 cos (2x – 90o + 4x)/2

= 2 sin (90o – 2x)/2 cos (6x – 90o)/2

= 2 sin (45° – x) cos (3x – 45°)

= 2 sin (45° – x) cos {-(45° – 3x)} (since, {cos (-x)= cos x})

= 2 sin (45° – x) cos (45° – 3x)

= 2 sin (π/4 – x) cos (π/4 – 3x)

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×