MENU
Question -

समान्तर चतुर्भुज ABCD के विकर्ण BD पर दो बिन्दु P और Q इस प्रकार स्थित हैं कि DP = BQ है। दर्शाइए कि
(i) ∆APD = ∆CQB
(ii) AP = CQ
(iii) ∆AQB = ∆CPD
(iv) AQ = CP
(v) APCQ एक समान्तर चतुर्भुज है।



Answer -

दिया है : चतुर्भुज ABCD एक समान्तर चतुर्भुज है और BD उसका एक विकर्ण है।
BD पर P और Q दो बिन्दु इस प्रकार स्थित हैं कि DP = BQ है।
AP, AQ, CP वे C रेखाखण्ड खींचे गए हैं जिनसे चतुर्भुज APCQ बनता है।
सिद्ध करना है :
(i) ∆APD = ∆CQB
(ii) AP = CQ
(iii) ∆AQB = ∆CPD
(iv) AQ = CP
(v) APCQ एक समान्तर चतुर्भुज है।
उपपत्ति : चतुर्भुज ABCD समान्तर चतुर्भुज है ।
AB = CD तथा और
AB || CD तथा BC|| DA
(i) BC || DA और BD एक तिर्यक रेखा है।
∠ADB = ∠CBD ⇒ ∠ADP = ∠CBQ (एकान्तर कोण)
अब, ∆APD और ∆CQB में,
DA = BC (दिया है।)
∠ADP = ∠CBQ (ऊपर सिद्ध किया है।)
DP = BQ (दिया है।)
∆APD = ∆CQB (S.A.S. से)
Proved.
(ii) ∆APD = ∆CQB
AP = CQ (C.P.C.T.)
Proved.
(iii) AB || CD और BD तिर्यक रेखा है।
∠ABD = ∠BDC के ∠ABQ = ∠PDC (एकान्तर कोण)
अब ∆AQB और ∆CPD में, AB = CD (दिया है।)
∠ABQ = ∠PDC (ऊपर सिद्ध किया है।)
BQ = DP (दिया है।)
∆AQB = ∆CPD (S.A.S. से)
Proved.
(iv) ∆AQB = ∆CPD
AQ = CP (C.P.C.T.)
Proved.
(v) चतुर्भुज APCR में सम्मुख भुजाएँ AP = CQ और AQ = CP [भाग (i) तथा (iv) से]
अत: चतुर्भुज APCQ एक समान्तर चतुर्भुज है।
Proved.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×