MENU
Question -

ABCD एक समचतुर्भुज है। दर्शाइए विकर्ण AC कोणों A और C दोनों को समद्विभाजित करता है तथा विकर्ण BD, कोणों B और D दोनों को समद्विभाजित करता है।



Answer -

दिया है : ABCD एक समचतुर्भुज है।
सिद्ध करना है : विकर्ण AC, ∠A और ∠C दोनों को समद्विभाजित करता है
तथा विकर्ण BD, ∠B तथा ∠D दोनों को समद्विभाजित करता है।
उपपत्ति : चतुर्भुज ABCD एक समचतुर्भुज है।
AB = BC = CD = DA
∆ABC में,
AB = BC के ∠ACB = ∠BAC …(1) (त्रिभुज में समान भुजाओं के सम्मुख कोण समान होते हैं।)
समचतुर्भुज एक समान्तर चतुर्भुज भी होता है।
AB || CD और AC तिर्यक रेखा है।
∠BAC = ∠ACD (एकान्तर कोण) …(2)
समीकरण (1) व (2) से,
∠ACB = ∠ACD (एकान्तर कोण) …(3)
अर्थात् AC, ∠C का समद्विभाजक है।
BC || DA तथा AC तिर्यक रेखा है के
∠ACB= ∠DAC (एकान्तर कोण) …(4)
तब समीकरण (1) व (4) से,
∠DAC = ∠BAC
अर्थात् AC, ∠A का समद्विभाजक है।
अतः AC, ∠A व ∠C दोनों का समद्विभाजक है।
BC || DA और BD तिर्यक रेखा है।
∠ADB = ∠CBD (एकान्तर कोण) …(5)
इसी प्रकार ∠ABD = ∠ BDC (एकान्तर कोण) …(6)
और : ∆BCD में,
BC = CD ⇒ ∠BDC = ∠CBD …(7)
(त्रिभुज में समान भुजाओं के सम्मुख कोण समान होते हैं।)
तब समीकरण (5) व (7) से,
∠ADB = ∠BDC
अर्थात् BD, ∠D का समद्विभाजक है।
समीकरण (6) व (7) से,
∠ABD = ∠CBD
अर्थात् BD, ∠B का समद्विभाजक है।
BD, ∠B व ∠D दोनों का समद्विभाजक है।
अत: विकर्ण AC, ∠A व ∠C को समद्विभाजित करता है और BD, ∠B व ∠D को समद्विभाजित करता है।
Proved.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×