MENU
Question -

ABCD एक आयत है जिसमें विकर्ण AC दोनों कोणों A व C को समद्विभाजित करता है। दर्शाइए कि
(i) ABCD एक वर्ग है।
(ii) BD, दोनों कोणों B और D को समद्विभाजित करता है।



Answer -

दिया है : चतुर्भुज ABCD एक आयत है जिसमें विकर्ण AC, ∠A व ∠C दोनों को समद्विभाजित करता है।
BD आयत का दूसरा विकर्ण है।
सिद्ध करना है :
(i) चतुर्भुज ABCD एक वर्ग है।
(ii) BD, ∠B और ∠D दोनों को समद्विभाजित करता है।
उपपत्ति : (i) चतुर्भुज ABCD एक आयत है।
AB = CD तथा ∠A = 90°
विकर्ण AC, ∠A तथा ∠C दोनों को समद्विभाजित करता है।
∠BAC = ∠DAC और ∠BCA = ∠DCA
∆ABC तथा ∆ADC में,
∠BAC =∠DAC (दिया है।)
AC = AC (उभयनिष्ठ भुजा है।)
∠BCA = ∠DCA (दिया है।)
∆ABC = ∆ADC (A.S.A. से)
AB = DA (C.P.C.T.) …(1)
चतुर्भुज ABCD में,
AB = CD; BC = DA;
AB = BC = CD = DA
तथा ∠A = 90° [समीकरण (1) से ]
अतः चतुर्भुज ABCD एक वर्ग है।
Proved.
(ii) ∆BCD में,
BC = CD ⇒ BDC = ∠CBD (त्रिभुज में समान भुजाओं के सम्मुख कोण समान होते हैं।)
अब वर्ग की सम्मुख भुजाएँ समान्तर होती हैं।
अर्थात AB || CD और BD तिर्यक रेखा है।
∠BDC = ∠ABD (एकान्तर कोण) …(2)
समीकरण (1) व (2) से,
∠ABD = ∠CBD
अर्थात् BD, ∠B का समद्विभाजक है।
इसी प्रकार, BC || DA और BD तिर्यक रेखा है।
∠CBD = ∠ADB (एकान्तर कोण) …(3)
समीकरण (1) व (3) से,
∠BDC = ∠ADB
अर्थात् BD, ∠D का समद्विभाजक है।
अत: BD, ∠B तथा ∠D दोनों को समद्विभाजित करता है।
Proved.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×