Question -
Answer -
दिया है : ∆ABC और ∆DEF दो त्रिभुज हैं जिनमें AB = DE और AB || DE तथा BC = EF और BC || EF हैं। शीर्षों A, B व C को क्रमशः शीर्षों D, E व F से ऋजु रेखाखण्डों द्वारा जोड़ा गया है।
सिद्ध करना है :
(i) चतुर्भुज ABED एक समान्तर चतुर्भुज है।
(ii) चतुर्भुज BEFC एक समान्तर चतुर्भुज है।
(iii) AD || CF और AD = CF है।
(iv) चतुर्भुज ACFD एक समान्तर चतुर्भुज है।
(v) AC = DF है।
(vi) ∆ABC = ∆DEF है।
उपपत्ति :
(i) चतुर्भुज ABED में,
AB = DE और AB || DE
चतुर्भुज ABED की सम्मुख भुजाओं AB वे DE का एक युग्म बराबर और समान्तर है।
अत: चतुर्भुज ABED एक समान्तर चतुर्भुज है।
Proved.
(ii) चतुर्भुज BEFC में, BC = EF और BC || EF
चतुर्भुज BEFC की सम्मुख भुजाओं BC और EF का एक युग्म बराबर और समान्तर है।
अतः चतुर्भुज BEFC एक समान्तर चतुर्भुज है।
Proved.
(iii) चतुर्भुज ABED समान्तर चतुर्भुज है।
AD = BE और AD || BE चतुर्भुज BEFC एक समान्तर चतुर्भुज है।
BE = CF
BE || CF दोनों को मिलाकर,
AD = BE = CF और AD || BE || CF
अतः AD = CF और AD || CF
Proved.
(iv) चतुर्भुज ACFD में,
AD = CF और AD || CF
अर्थात् सम्मुख भुजाओं का एक युग्म बराबर और समान्तर है।
अतः चतुर्भुज ACFD एक समान्तर चतुर्भुज है।
Proved.
(v) चतुर्भुज ACFD एक समान्तर चतुर्भुज है।
सम्मुख भुजाओं के युग्म बराबर होंगे।
अत: AC = DF
Proved.
(vi) ∆ABC और ∆DEF की तुलना करने पर,
AB = DE (दिया है।)
AC = DF (अभी सिद्ध किया है।)
BC = EF (दिया है।)
∆ABC = ∆DEF (S.S.S. से)
Proved.