MENU
Question -

provethat:
(i) cos2 π/4– sin2 π/12 = √3/4

(ii) sin(n+ 1) A – sin2nA = sin (2n + 1) A sin A



Answer -

(i) cos2 π/4 – sin2 π/12 =√3/4

Let us consider LHS:

cos2 π/4 – sin2 π/12

We know that, cos2A – sinB= cos (A + B) cos (A – B)

So,

cos2 π/4 – sin2 π/12 =cos (π/4 + π/12) cos (π/4 – π/12)

= cos 4π/12 cos 2π/12

= cos π/3 cos π/6

= 1/2 × √3/2

= √3/4

= RHS

LHS = RHS

Hence proved.

(ii) sin(n + 1) A – sin2nA =sin (2n + 1) A sin A

Let us consider LHS:

sin(n + 1) A – sin2nA

We know that, sin2A – sinB= sin (A + B) sin (A – B)

Here, A = (n + 1) A and B = nA

So,

sin(n + 1) A – sin2n A =sin ((n + 1) A + nA) sin ((n + 1) A – nA)

= sin (nA +A + nA) sin (nA +A – nA)

= sin (2nA +A) sin (A)

= sin (2n + 1) A sin A

= RHS

LHS = RHS

Hence proved.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×