MENU
Question -

Provethat:
(i) tan 8x –tan 6x – tan 2x = tan 8x tan 6x tan 2x

(ii) tanπ/12 + tan π/6 + tan π/12 tan π/6 = 1

(iii) tan36o + tan 9o + tan 36o tan 9o = 1

(iv) tan13x – tan 9x – tan 4x = tan 13x tan 9x tan 4x



Answer -

(i) tan 8x – tan 6x – tan 2x = tan 8x tan 6x tan 2x

Let us consider LHS:

tan 8x – tan 6x – tan 2x

tan 8x = tan(6x + 2x)

We know that, tan (A + B) = (tan A + tan B) / (1 – tanA tan B)

So,

tan 8x = (tan 6x + tan 2x) / (1 – tan 6x tan 2x)

By cross-multiplying we get,

tan 8x (1 – tan 6x tan 2x) = tan 6x + tan 2x

tan 8x – tan 8x tan 6x tan2x = tan 6x + tan 2x

Upon rearranging we get,

tan 8x – tan 6x – tan 2x = tan 8x tan 6x tan 2x

= RHS

LHS = RHS

Hence proved.

(ii) tan π/12 + tan π/6 + tan π/12 tan π/6 = 1

We know,

π/12 = 15° and π/6 = 30°

So, we have 15° + 30° = 45°

Tan (15° + 30°) = tan 45°

We know that, tan (A + B) = (tan A + tan B) / (1 – tanA tan B)

So,

(tan 15o + tan 30o) / (1 –tan 15o tan 30o) = 1

tan 15° + tan 30° = 1 – tan 15° tan 30°

Upon rearranging we get,

tan15° + tan30° + tan15° tan30° = 1

Hence proved.

(iii) tan 36o + tan 9o + tan36o tan 9o = 1

We know 36° + 9° = 45°

So we have,

tan (36° + 9°) = tan 45°

We know that, tan (A + B) = (tan A + tan B) / (1 – tanA tan B)

So,

(tan 36o + tan 9o) / (1 –tan 36o tan 9o) = 1

tan 36° + tan 9° = 1 – tan 36° tan 9°

Upon rearranging we get,

tan 36° + tan 9° + tan 36° tan 9° = 1

Hence proved.

(iv) tan 13x – tan 9x – tan 4x = tan 13x tan 9x tan 4x

Let us consider LHS:

tan 13x – tan 9x – tan 4x

tan 13x = tan (9x + 4x)

We know that, tan (A + B) = (tan A + tan B) / (1 – tanA tan B)

So,

tan 13x = (tan 9x + tan 4x) / (1 – tan 9x tan 4x)

By cross-multiplying we get,

tan 13x (1 – tan 9x tan 4x) = tan 9x + tan 4x

tan 13x – tan 13x tan 9x tan 4x = tan 9x + tan 4x

Upon rearranging we get,

tan 13x – tan 9x – tan 4x = tan 13x tan 9x tan 4x

= RHS

LHS = RHS

Hence proved.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×