MENU
Question -

Find the maximum value of 2x3┬атИТ24x┬а+ 107 in the interval [1, 3]. Find the maximum value of thesame function in [тИТ3, тИТ1].



Answer -

Let┬аf(x) = 2x3┬атИТ24x┬а+ 107.

We first consider the interval [1, 3].

Then, we evaluate the value of┬аf┬аatthe critical point┬аx┬а= 2 тИИ [1, 3] andat the end points of the interval [1, 3].

f(2) = 2(8)тИТ 24(2) + 107 = 16 тИТ 48 + 107 = 75

f(1) = 2(1)тИТ 24(1) + 107 = 2 тИТ 24 + 107 = 85

f(3) = 2(27)тИТ 24(3) + 107 = 54 тИТ 72 + 107 = 89

Hence, the absolute maximum value of┬аf(x)in the interval [1, 3] is 89 occurring at┬аx┬а= 3.

Next, we consider the interval [тИТ3, тИТ1].

Evaluate the value of┬аf┬аatthe critical point┬аx┬а= тИТ2 тИИ [тИТ3, тИТ1]and at the end points of the interval [1, 3].

f(тИТ3) = 2(тИТ27) тИТ 24(тИТ3) + 107 = тИТ54 + 72 + 107 = 125

f(тИТ1) =2(тИТ1) тИТ 24 (тИТ1) + 107 = тИТ2 + 24 + 107 = 129

f(тИТ2) =2(тИТ8) тИТ 24 (тИТ2) + 107 = тИТ16 + 48 + 107 = 139

Hence, the absolute maximum value of┬аf(x)in the interval [тИТ3, тИТ1] is 139 occurring at┬аx┬а= тИТ2.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×