MENU

Chapter 6 Application of Derivatives Ex 6.2 Solutions

Question - 11 : - Which of the followingfunctions are strictly decreasing on?

(A) cos (B) cos 2(C)cos 3(D) tan x

Answer - 11 : - (A) Let

In interval
 is strictlydecreasing in interval.

(B) Let
 is strictlydecreasing in interval.

(C) Let
The point divides the intervalinto two disjoint intervals
i.e., 0.
 f3 isstrictly increasing in interval
Hence, f3 isneither increasing nor decreasing in interval

(D) Let
In interval
 f4 isstrictly increasing in interval
Therefore, functionscos x and cos 2x are strictly decreasing in

Hence, the correct answers are A and B.

Question - 12 : - On which of the followingintervals is the function f given by  strictly decreasing?

(A)  (B) 
(C)  (D) None of these

Answer - 12 : -

We have,

In interval

Thus, function f isstrictly increasing in interval (0, 1).

In interval 

Thus, function f isstrictly increasing in interval

 f is strictly increasing in interval

Hence, function f isstrictly decreasing in none of the intervals.

The correct answer is D.

Question - 13 : - Find the least valueof a such that the function f given is strictly increasing on [1, 2].

Answer - 13 : -

We have,

Now, function isincreasing on [1,2].

Question - 14 : -

Let I be any interval disjoint from (−1, 1). Prove that thefunction f given by is strictlyincreasing on I.

Answer - 14 : -

We have,

The points x =1 and x = −1 divide the real line in three disjoint intervalsi.e., 

In interval (−1, 1), it is observed that:

 f is strictly decreasing on 

In intervals, it is observed that:

 f is strictly increasing on

Hence, function f is strictlyincreasing in interval I disjointfrom (−1, 1).

Hence, the given result is proved.

Question - 15 : - Prove that thefunction f given by f(x) = log sin x isstrictly increasing on and strictly decreasing on

Answer - 15 : -

We have,

In interval

 f is strictly increasing in

In interval

f isstrictly decreasing in

Question - 16 : - Prove that thefunction f given by f(x) = log cos x isstrictly decreasing on  and strictlyincreasing on

Answer - 16 : -

We have,

In interval

f isstrictly decreasing on

In interval

f isstrictly increasing on

Question - 17 : - Prove that the functiongiven by is increasing in R.

Answer - 17 : -

For any xR, (x −1)2 > 0.

Thus, is always positive in R.

Hence, the given function (f) isincreasing in R.

Question - 18 : - The interval in which  is increasing is
(A) (B) (−2, 0) (C)  (D) (0, 2)

Answer - 18 : -

We have,

The points x =0 and x = 2 divide the real line into three disjoint intervalsi.e.,

In intervalsis always positive.

f isdecreasing on
In interval (0, 2),

 f is strictly increasing on (0, 2).

Hence, f is strictlyincreasing in interval (0, 2).

The correct answer is D.

Free - Previous Years Question Papers
Any questions? Ask us!
×