MENU
Question -

If sin x = 3/5, tan y = 1/2 and π/2 < x< π< y< 3π/2 find the value of 8 tan x -√5 sec y.



Answer -

Given:

sin x = 3/5, tan y = 1/2 and π/2 < x< π

We know that, x is in second quadrant and y is inthird quadrant.

In second quadrant, cos x and tan x are negative.

In third quadrant, sec y is negative.

By using the formula,

cos x = – √(1-sin2 x)

tan x = sin x/cos x

Now,

cos x = – √(1-sin2 x)

= – √(1 – (3/5)2)

= – √(1 – 9/25)

= – √((25-9)/25)

= – √(16/25)

= – 4/5

tan x = sin x/cos x

= (3/5)/(-4/5)

= 3/5 × -5/4

= -3/4

We know that sec y = – √(1+tan2 y)

= – √(1 + (1/2)2)

= – √(1 + 1/4)

= – √((4+1)/4)

= – √(5/4)

= – √5/2

Now, 8 tan x – √5 sec y = 8(-3/4) – √5(-√5/2)

= -6 + 5/2

= (-12+5)/2

= -7/2

8 tan x – √5 sec y =-7/2

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×