MENU
Question -

Write first four terms of the A.P. when the first term a and the common difference are given as follows:



Answer -

(i) a = 10, d = 10
(ii) a = -2, d = 0
(iii) a = 4, d = – 3
(iv) a = -1 d = 1/2
(v) a = – 1.25, d = – 0.25


Solution

(i) a = 10, d =10

Let us consider, the Arithmetic Progressionseries be a1, a2, a3, a4, a5 …

a1 = a = 10

a2 = a1+d = 10+10 = 20

a3 = a2+d = 20+10 = 30

a4 = a3+d = 30+10 = 40

a5 = a4+d = 40+10 = 50

And so on…

Therefore, the A.P. series will be 10, 20, 30,40, 50 …

And First four terms of this A.P. will be 10,20, 30, and 40.


Solution

(ii) a = – 2, d =0

Let us consider, the Arithmetic Progressionseries be a1, a2, a3, a4, a5 …

a1 = a = -2

a2 = a1+d = – 2+0 = – 2

a3 = a2+d = – 2+0 = – 2

a4 = a3+d = – 2+0 = – 2

Therefore, the A.P. series will be – 2, – 2, –2, – 2 …

And, First four terms of this A.P. will be –2, – 2, – 2 and – 2.


Solution

(iii) a = 4, d =– 3

Let us consider, the Arithmetic Progressionseries be a1, a2, a3, a4, a5 …

a1 = a = 4

a2 = a1+d = 4-3 = 1

a3 = a2+d = 1-3 = – 2

a4 = a3+d = -2-3 = – 5

Therefore, the A.P. series will be 4, 1, – 2 –5 …

And, first four terms of this A.P. will be 4,1, – 2 and – 5.


Solution

(iv) a = – 1, d =1/2

Let us consider, the Arithmetic Progressionseries be a1, a2, a3, a4, a5 …

a2 = a1+d = -1+1/2 = -1/2

a3 = a2+d = -1/2+1/2 = 0

a4 = a3+d = 0+1/2 = 1/2

Thus, the A.P. series will be-1, -1/2, 0, 1/2

And First four terms of this A.P. will be -1,-1/2, 0 and 1/2.


Solution

(v) a = – 1.25, d =– 0.25

Let us consider, the Arithmetic Progressionseries be a1, a2, a3, a4, a5 …

a1 = a = – 1.25

a2 = a1 + d = –1.25-0.25 = – 1.50

a3 = a2 + d = –1.50-0.25 = – 1.75

a4 = a3 + d = –1.75-0.25 = – 2.00

Therefore, the A.P series will be 1.25, –1.50, – 1.75, – 2.00 ……..

And first four terms of this A.P. will be –1.25, – 1.50, – 1.75 and – 2.00.


Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×