Question -
Answer -
Given: A line which isperpendicular and parallel to x–axis respectively and passing through (4, 3)
By using the formula,
The equation of line:[y – y1 = m(x – x1)]
Let us consider,
Case 1: When Line isparallel to x–axis
The parallel lineshave equal slopes,
And, the slope ofx–axis is always 0, then
The slope of line, m =0
Coordinates of lineare (x1, y1) = (4, 3)
The equation of lineis y – y1 = m(x – x1)
Now substitute thevalues, we get
y – (3) = 0(x – 4)
y – 3 = 0
Case 2: When line isperpendicular to x–axis
The line isperpendicular to the x–axis, then x is 0 and y is – 1.
The slope of the lineis, m = y/x
= -1/0
Coordinates of lineare (x1, y1) = (4, 3)
The equation of line =y – y1 = m(x – x1)
Now substitute the values,we get
y – 3 = (-1/0) (x – 4)
x = 4
∴ The equation of linewhen it is parallel to x – axis is y = 3 and it is perpendicular is x = 4.