MENU
Question -

Which term of the G.P.:

(i) √2, 1/√2, 1/2√2, 1/4√2, … is 1/512√2 ?

(ii) 2, 2√2, 4, … is 128 ?

(iii) √3, 3, 3√3, … is 729 ?

(iv) 1/3, 1/9, 1/27… is 1/19683 ?



Answer -

(i) √2, 1/√2, 1/2√2,1/4√2, … is 1/512√2 ?

By using the formula,

Tn =arn-1

a = √2

r = t2/t1 =(1/√2) / (√2)

= 1/2

Tn =1/512√2

n = ?

Tn =arn-1

1/512√2 = (√2) (1/2)n-1

1/512√2×√2 = (1/2)n-1

1/512×2 = (1/2)n-1

1/1024 = (1/2)n-1

(1/2)10 =(1/2)n-1

10 = n – 1

n = 10 + 1

= 11

 11th termof the G.P is 1/512√2

(ii) 2, 2√2, 4, … is 128 ?

By using the formula,

Tn =arn-1

a = 2

r = t2/t1 =(2√2/2)

= √2

Tn =128

n = ?

Tn =arn-1

128 = 2 (√2)n-1

128/2 = (√2)n-1

64 = (√2)n-1

26 =(√2)n-1

12 = n – 1

n = 12 + 1

= 13

 13th termof the G.P is 128

(iii) √3, 3, 3√3, … is 729 ?

By using the formula,

Tn =arn-1

a = √3

r = t2/t1 =(3/√3)

= √3

Tn =729

n = ?

Tn =arn-1

729 = √3 (√3)n-1

729 = (√3)n

36 =(√3)n

(√3)12 =(√3)n

n = 12

 12th termof the G.P is 729

(iv) 1/3, 1/9, 1/27… is1/19683 ?

By using the formula,

Tn =arn-1

a = 1/3

r = t2/t1 =(1/9) / (1/3)

= 1/9 × 3/1

= 1/3

Tn =1/19683

n = ?

Tn =arn-1

1/19683 = (1/3) (1/3)n-1

1/19683 = (1/3)n

(1/3)9 =(1/3)n

n = 9

 9th termof the G.P is 1/19683

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×