MENU
Question -

Find:

(i) the ninth term of the G.P. 1, 4, 16, 64, ….

(ii) the 10th term of the G.P. -3/4, ½, -1/3, 2/9, ….

(iii) the 8th term of the G.P. 0.3, 0.06, 0.012, ….

(iv) the 12th term of the G.P. 1/a3x3 ,ax, a5x5, ….

(v) nth term of the G.P. √3, 1/√3, 1/3√3, …

(vi) the 10th term of the G.P. √2, 1/√2, 1/2√2, ….



Answer -

(i) the ninth term of theG.P. 1, 4, 16, 64, ….

We know that,

t1 = a= 1, r = t2/t1 = 4/1 = 4

By using the formula,

Tn =arn-1

T9 = 1(4)9-1

= 1 (4)8

= 48

(ii) the 10th termof the G.P. -3/4, ½, -1/3, 2/9, ….

We know that,

t1 = a= -3/4, r = t2/t1 = (1/2) / (-3/4) = ½ × -4/3 = -2/3

By using the formula,

Tn =arn-1

T10 =-3/4 (-2/3)10-1

= -3/4 (-2/3)9

= ½ (2/3)8

(iii) the 8th termof the G.P., 0.3, 0.06, 0.012, ….

We know that,

t1 = a= 0.3, r = t2/t1 = 0.06/0.3 = 0.2

By using the formula,

Tn =arn-1

T8 =0.3 (0.2)8-1

= 0.3 (0.2)7

(iv) the 12th termof the G.P. 1/a3x3 , ax, a5x5,….

We know that,

t1 = a= 1/a3x3, r = t2/t1 = ax/(1/a3x3)= ax (a3x3) = a4x4

By using the formula,

Tn =arn-1

T12 =1/a3x3 (a4x4)12-1

= 1/a3x3 (a4x4)11

= (ax)41

(v) nth term of the G.P.√3, 1/√3, 1/3√3, …

We know that,

t1 = a= √3, r = t2/t1 = (1/√3)/√3 = 1/(√3×√3) = 1/3

By using the formula,

Tn =arn-1

Tn =√3 (1/3)n-1

(vi) the 10th termof the G.P. √2, 1/√2, 1/2√2, ….

We know that,

t1 = a= √2, r = t2/t1 = (1/√2)/√2 = 1/(√2×√2) = 1/2

By using the formula,

Tn =arn-1

T10 =√2 (1/2)10-1

= √2 (1/2)9

= 1/√2 (1/2)8

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×