MENU
Question -

The Cartesian product A × A has 9 elements among which are found (–1, 0) and (0, 1). Find the set A and the remaining elements of A × A.



Answer -

We know that,
If n(A) = p and n(B) = q, then n(A × B) = pq.
Also, n(A × A) = n(A) × n(A)
Given,
n(A × A) = 9
So, n(A) × n(A) = 9
Thus, n(A) = 3
Also given that, the ordered pairs (–1, 0) and (0, 1) are two of the nine elements of A × A.
And, we know in A × A = {(a, a): a ∈ A}.
Thus, –1, 0, and 1 has to be the elements of A.
As n(A) = 3, clearly A = {–1, 0, 1}.
Hence, the remaining elements of set A × A are as follows:
(–1, –1), (–1, 1), (0, –1), (0, 0), (1, –1), (1, 0), and (1, 1)

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×