MENU
Question -

A well of diameter 2 m is dug 14 m deep. The earth taken out of it is evenly spread all around it to form an embankment of height 40 cm. Find the width of the embankment?



Answer -

Given,

Radius of the circularcylinder (r) = 2/2 m = 1 m

Height of the well (h)= 14 m

We know that,

Volume of the solidcircular cylinder = π r2h

= π × 12×14 …. (i)

And,

The height of theembankment (h) = 40 cm = 0.4 m

Let the width of theembankment be (x) m.

The embankment is ahollow cylinder with external radius = 1 + x and internal radius = 1

Volume of theembankment = π × r× h

= π × [(1 + x)2 –(1)2]× 0.4 ….. (ii)

As the well is spreadevenly to form embankment then the volumes will be same.

So, on equatingequations (i) and (ii), we get

π × 12 ×14 = π × [(1 + x)2 – (1)2] x 0.4

14/0.4 = 1 + x+2x – 1

35 = x2 +2x

x2 +2x – 35 = 0

Solving byfactorization method, we have

(x + 7) (x – 5) = 0

So, x = 5 m can onlybe the solution as it’s a positive value.

Therefore, the widthof the embankment is 5 m.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×