MENU
Question -

Check whether the following probabilities P(A) and P(B) are consistently defined
(i) P(A) = 0.5, P(B) = 0.7, P(A ∩ B) = 0.6
(ii) P(A) = 0.5, P(B) = 0.4, P(A ∪ B) = 0.8



Answer -

(i) P(A) = 0.5, P(B) = 0.7, P(A ∩ B) = 0.6

P(A ∩ B) > P(A)

Therefore, the given probabilities are not consistentlydefined.

(ii) P(A) = 0.5, P(B) = 0.4, P(A B) = 0.8

Then,

P(A B) = P(A) + P(B) – P(A ∩ B)

0.8 = 0.5 + 0.4 – P(A ∩ B)

Transposing – P(A ∩ B) to LHS and it becomes P(A ∩ B) and0.8 to RHS and it becomes – 0.8.

P(A ∩ B) = 0.9 – 0.8

= 0.1

Therefore, P(A ∩ B) < P(A) and P(A ∩ B) < P(B)

So, the given probabilities are consistently defined.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×