MENU
Question -

If P(n, 5) = 20 P(n, 3), find n.



Answer -

Given:

P(n, 5) = 20 P(n, 3)

By using the formula,

P (n, r) = n!/(n – r)!

P (n, 5) = n!/(n – 5)!

P (n, 3) = n!/(n – 3)!

So, from the question,

P(n, 5) = 20 P(n, 3)

Substituting theobtained values in above expression we get,

n!/(n – 5)! = 20 ×n!/(n – 3)!

Upon evaluating,

n! (n – 3)! / n! (n –5)! = 20

[(n –3) (n – 3 – 1) (n – 3 – 2)!] / (n – 5)! = 20

[(n –3) (n – 4) (n – 5)!] / (n – 5)! = 20

(n – 3) (n – 4) = 20

n2 –3n – 4n + 12 = 20

n2 –7n + 12 – 20 = 0

n2 –7n – 8 = 0

n2 –8n + n – 8 = 0

n(n – 8) – 1(n – 8) =0

(n – 8) (n – 1) = 0

n = 8 or 1

For, P(n, r): n ≥ r

 n =8 [for, P(n, 5)]

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×