MENU
Question -

Find the modulus and arguments of the following complex numbers and henceexpress each of them in the polar form:

(i) 1 + i

(ii) √3 + i

(iii) 1 – i

(iv) (1 – i) / (1 + i)

(v) 1/(1 + i)

(vi) (1 + 2i) / (1 – 3i)

(vii) sin 120o – i cos 120o

(viii) -16 / (1 + i√3)



Answer -

We know that the polarform of a complex number Z = x + iy is given by Z = |Z| (cos θ + i sin θ)

Where,

|Z| = modulus ofcomplex number = √(x2 +y2)

θ = arg (z) = argumentof complex number = tan-1 (|y| / |x|)

(i) 1 + i

Given: Z = 1 + i

So now,

|Z| = √(x2 + y2)

= √(12 + 12)

= √(1 + 1)

= √2

θ = tan-1 (|y|/ |x|)

= tan-1 (1/ 1)

= tan-1 1

Since x > 0, y >0 complex number lies in 1st quadrant and the value of θ is 00≤θ≤900.

θ = π/4

Z = √2 (cos (π/4) + i sin (π/4))

Polar form of (1 + i)is √2 (cos (π/4) + i sin(π/4))

(ii) √3 + i

Given: Z = √3 + i

So now,

|Z| = √(x2 + y2)

= √((√3)2 + 12)

= √(3 + 1)

= √4

= 2

θ = tan-1 (|y|/ |x|)

= tan-1 (1/ √3)

Since x > 0, y >0 complex number lies in 1st quadrant and the value of θ is 00≤θ≤900.

θ = π/6

Z = 2 (cos (π/6) + isin (π/6))

Polar form of (√3 +i) is 2 (cos (π/6) + i sin (π/6))

(iii) 1 – i

Given: Z = 1 – i

So now,

|Z| = √(x2 + y2)

= √(12 + (-1)2)

= √(1 + 1)

= √2

θ = tan-1 (|y|/ |x|)

= tan-1 (1/ 1)

= tan-1 1

Since x > 0, y <0 complex number lies in 4th quadrant and the value of θ is -900≤θ≤00.

θ = -π/4

Z = √2 (cos (-π/4) + i sin (-π/4))

= √2 (cos (π/4) – i sin (π/4))

Polar form of (1 – i)is √2 (cos (π/4) – i sin(π/4))

(iv) (1 – i) / (1 + i)

Given: Z = (1 – i) /(1 + i)

Let us multiply anddivide by (1 – i), we get

= 0 – i

So now,

|Z| = √(x2 + y2)

= √(02 + (-1)2)

= √(0 + 1)

= √1

θ = tan-1 (|y|/ |x|)

= tan-1 (1/ 0)

= tan-1 ∞

Since x ≥ 0, y < 0complex number lies in 4th quadrant and the value of θ is -900≤θ≤00.

θ = -π/2

Z = 1 (cos (-π/2) + isin (-π/2))

= 1 (cos (π/2) – i sin(π/2))

Polar form of (1 – i)/ (1 + i) is 1 (cos (π/2) – i sin (π/2))

(v) 1/(1 + i)

Given: Z = 1 / (1 + i)

Let us multiply anddivide by (1 – i), we get

So now,

|Z| = √(x2 + y2)

= √((1/2)2 + (-1/2)2)

= √(1/4 + 1/4)

= √(2/4)

= 1/√2

θ = tan-1 (|y|/ |x|)

= tan-1 ((1/2)/ (1/2))

= tan-1 1

Since x > 0, y <0 complex number lies in 4th quadrant and the value of θ is -900≤θ≤00.

θ = -π/4

Z = 1/√2 (cos (-π/4) + i sin (-π/4))

= 1/√2 (cos (π/4) – i sin (π/4))

Polar form of 1/(1 +i) is 1/√2 (cos (π/4) – i sin(π/4))

(vi) (1 + 2i) / (1 – 3i)

Given: Z = (1 + 2i) /(1 – 3i)

Let us multiply anddivide by (1 + 3i), we get

So now,

|Z| = √(x2 + y2)

= √((-1/2)2 + (1/2)2)

= √(1/4 + 1/4)

= √(2/4)

= 1/√2

θ = tan-1 (|y|/ |x|)

= tan-1 ((1/2)/ (1/2))

= tan-1 1

Since x < 0, y >0 complex number lies in 2nd quadrant and the value of θ is 900≤θ≤1800.

θ = 3π/4

Z = 1/√2 (cos (3π/4) + i sin (3π/4))

Polar form of (1 +2i) / (1 – 3i) is 1/√2 (cos(3π/4) + i sin (3π/4))

(vii) sin 120o –i cos 120o

Given: Z = sin 120o –i cos 120o

= √3/2 – i (-1/2)

= √3/2 + i (1/2)

So now,

|Z| = √(x2 + y2)

= √((√3/2)2 + (1/2)2)

= √(3/4 + 1/4)

= √(4/4)

= √1

= 1

θ = tan-1 (|y|/ |x|)

= tan-1 ((1/2)/ (√3/2))

= tan-1 (1/√3)

Since x > 0, y >0 complex number lies in 1st quadrant and the value of θ is 00≤θ≤900.

θ = π/6

Z = 1 (cos (π/6) + isin (π/6))

Polar form of √3/2 + i (1/2) is 1 (cos (π/6) + i sin(π/6))

(viii) -16 / (1 + i√3)

Given: Z = -16 / (1 +i√3)

Let us multiply anddivide by (1 – i√3), we get

So now,

|Z| = √(x2 + y2)

= √((-4)2 + (4√3)2)

= √(16 + 48)

= √(64)

= 8

θ = tan-1 (|y|/ |x|)

= tan-1 ((4√3) / 4)

= tan-1 (√3)

Since x < 0, y >0 complex number lies in 2nd quadrant and the value of θ is 900≤θ≤1800.

θ = 2π/3

Z = 8 (cos (2π/3) + isin (2π/3))

Polar form of -16 /(1 + i√3) is 8 (cos (2π/3) + i sin (2π/3))

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×