MENU

RD Chapter 12 Mathematical Induction Ex 12.2 Solutions

Question - 21 : -

52n + 2 – 24n – 25is divisible by 576 for all n ϵ N

Answer - 21 : -

Let P (n): 52n + 2 – 24n – 25 is divisibleby 576

Let us check for n = 1,

P (1): 52.1+2 – 24.1 – 25

: 625 – 49

: 576

P (n) is true for n = 1. Where, P (n) is divisible by 576

Now, let us check for P (n) is true for n = k, and have toprove that P (k + 1) is true.

P (k): 52k + 2 – 24k – 25 is divisible by576

: 52k + 2 – 24k – 25 = 576λ …. (i)

We have to prove,

52k + 4 – 24(k + 1) – 25 is divisible by 576

5(2k + 2) + 2 – 24(k + 1) – 25 = 576μ

So,

= 5(2k + 2) + 2 – 24(k + 1) – 25

= 5(2k + 2).52 – 24k – 24– 25

= (576λ + 24k + 25)25 – 24k– 49 by using equation (i)

= 25. 576λ + 576k + 576

= 576(25λ + k + 1)

= 576μ

P (n) is true for n = k + 1

Hence, P (n) is true for all n N.

Question - 22 : -

32n + 2 – 8n – 9is divisible by 8 for all n ϵ N

Answer - 22 : -

Let P (n): 32n + 2 – 8n – 9 is divisible by8

Let us check for n = 1,

P (1): 32.1 + 2 – 8.1 – 9

: 81 – 17

: 64

P (n) is true for n = 1. Where, P (n) is divisible by 8

Now, let us check for P (n) is true for n = k, and have toprove that P (k + 1) is true.

P (k): 32k + 2 – 8k – 9 is divisible by 8

: 32k + 2 – 8k – 9 = 8λ … (i)

We have to prove,

32k + 4 – 8(k + 1) – 9 is divisible by 8

3(2k + 2) + 2 – 8(k + 1) – 9 = 8μ

So,

= 32(k + 1).32 – 8(k + 1) –9

= (8λ + 8k + 9)9 – 8k – 8 – 9

= 72λ + 72k + 81 – 8k – 17 using equation (1)

= 72λ + 64k + 64

= 8(9λ + 8k + 8)

= 8μ

P (n) is true for n = k + 1

Hence, P (n) is true for all n N.

Question - 23 : -

(ab) n = an bn forall n ϵ N

Answer - 23 : -

Let P (n): (ab) n = an bn

Let us check for n = 1,

P (1): (ab) 1 = a1 b1

: ab = ab

P (n) is true for n = 1.

Now, let us check for P (n) is true for n = k, and have toprove that P (k + 1) is true.

P (k): (ab) k = ak bk …(i)

We have to prove,

(ab) k + 1 = ak + 1.bk+ 1

So,

= (ab) k + 1

= (ab) k (ab)

= (abk) (ab) using equation (1)

= (ak + 1) (bk + 1)

P (n) is true for n = k + 1

Hence, P (n) is true for all n N.

Question - 24 : - n (n + 1) (n + 5) is a multiple of 3 for al ln ϵ N.

Answer - 24 : -

Let P (n): n (n + 1) (n + 5) is a multiple of 3

Let us check for n = 1,

P (1): 1 (1 + 1) (1 + 5)

: 2 × 6

: 12

P (n) is true for n = 1. Where, P (n) is a multiple of 3

Now, let us check for P (n) is true for n = k, and have toprove that P (k + 1) is true.

P (k): k (k + 1) (k + 5) is a multiple of 3

: k(k + 1) (k + 5) = 3λ … (i)

We have to prove,

(k + 1)[(k + 1) + 1][(k + 1) + 5] is a multiple of 3

(k + 1)[(k + 1) + 1][(k + 1) + 5] = 3μ

So,

= (k + 1) [(k + 1) + 1] [(k + 1) + 5]

= (k + 1) (k + 2) [(k + 1) + 5]

= [k (k + 1) + 2(k + 1)] [(k + 5) + 1]

= k (k + 1) (k + 5) + k(k + 1) + 2(k + 1) (k + 5) + 2(k + 1)

= 3λ + k2 + k + 2(k2 + 6k +5) + 2k + 2

= 3λ + k2 + k + 2k2 + 12k +10 + 2k + 2

= 3λ + 3k2 + 15k + 12

= 3(λ + k2 + 5k + 4)

= 3μ

P (n) is true for n = k + 1

Hence, P (n) is true for all n N.

Question - 25 : -

72n + 23n – 3.3n – 1 is divisible by 25 for all n ϵ N

Answer - 25 : -

Let P (n): 72n + 23n – 3. 3n – 1is divisible by 25

Let us check for n = 1,

P (1): 72 + 20.30

: 49 + 1

: 50

P (n) is true for n = 1. Where, P (n) is divisible by 25

Now, let us check for P (n) is true for n = k, and have toprove that P (k + 1) is true.

P (k): 72k + 23k – 3. 3k – 1 isdivisible by 25

: 72k + 23k – 3. 3k – 1 =25λ … (i)

We have to prove that:

72k + 1 + 23k. 3k isdivisible by 25

72k + 2 + 23k. 3k =25μ

So,

= 72(k + 1) + 23k. 3k

= 72k.71 + 23k. 3k

= (25λ – 23k – 3. 3k – 1) 49 + 23k.3k by using equation (i)

= 25λ. 49 – 23k/8. 3k/3. 49 + 23k.3k

= 24×25×49λ – 23k . 3.49 + 24 . 23k.3k

= 24×25×49λ – 25 . 23k. 3k

= 25(24 . 49λ – 23k. 3k)

= 25μ

P (n) is true for n = k + 1

Hence, P (n) is true for all n  N.

Free - Previous Years Question Papers
Any questions? Ask us!
×