MENU
Question -

In a тИЖABC, it is given that AB = AC and the bisectors of тИаB and тИаC intersect at O. If M is a point on BO produced, prove that тИаMOC = тИаABC.



Answer -

Given : In тИЖABC, AB = AC the bisectors of тИаB and тИаC intersect at O. M is any point on BO produced.
┬а
To prove : тИаMOC = тИаABC
Proof: In тИЖABC, AB = BC
тИ┤ тИаC = тИаB
тИ╡ OB and OC are the bisectors of тИаB and тИаC
тИ┤ тИа1 =тИа2 =┬а┬атИаB
Now in тИаOBC,
Ext. тИаMOC = Interior opposite angles тИа1 + тИа2
= тИа1 + тИа1 = 2тИа1 = тИаB
Hence тИаMOC = тИаABC

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×