MENU
Question -

Find the equation of the circle passingthrough the points (2, 3) and (–1, 1) and whose centre is on the line –3y – 11 = 0.



Answer -

Let the equation of the required circle be (x – h)2 + (y – k)2 = r2.

Since the circle passesthrough points (2, 3) and (–1, 1),

(2 – h)2 + (3 – k)2 = r2 … (1)

(–1 – h)2 + (1 – k)2 = r2 … (2)

Since the centre (h, k) of the circlelies on line – 3y – 11 = 0,

– 3k = 11 … (3)

From equations (1) and(2), we obtain

(2 – h)+ (3 – k)2 = (–1 – h)2 + (1 – k)2

4 – 4h + h2 + 9 – 6k + k2 = 1 + 2h + h2 + 1 – 2k + k2

4 – 4h + 9 –6k = 1 + 2h + 1 – 2k

6h + 4k =11 … (4)

On solving equations (3)and (4), we obtain .

On substituting the values of h and k inequation (1), we obtain

Thus, the equation of therequired circle is

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×