MENU
Question -

Find the equation of the circle passing through (0, 0) and making intercepts a and b on the coordinate axes.



Answer -

Let the equation of the requiredcircle be (x – h)2 + (y – k)2 = r2.

Sincethe circle passes through (0, 0),

(0– h)2 + (0 – k)2 = r2

 h2 + k2 = r2

Theequation of the circle now becomes (x – h)2 + (y – k)2 = h2 + k2.

Itis given that the circle makes intercepts and b onthe coordinate axes. This means that the circle passes through points (a,0) and (0, b). Therefore,

(a – h)2 + (0 – k)2 = h2 + k2 …(1)

(0– h)2 + (b – k)2 = h2 + k2 … (2)

Fromequation (1), we obtain

a2 – 2ah + h2 + k2 = h2 + k2

 a2 – 2ah = 0

 a(a –2h)= 0

 a =0 or (a –2h)= 0

However, a ≠0; hence, (a –2h)= 0  h =.

Fromequation (2), we obtain

h2 + b2 –2bk + k2 = h2 + k2

 b2 – 2bk = 0

 b(b –2k)= 0

 b =0 or(b –2k)= 0

However, b ≠0; hence, (b –2k)= 0  k = .

Thus,the equation of the required circle is

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×