MENU
Question -

For any ╬ФABC show that
2 (bc cos A+ ca cos B + ab cos C) = a2┬а+ b2┬а+ c2



Answer -

Let us consider LHS:

2 (bc cos A + ca cos B + ab cos C)

As LHS contain 2ca cos B, 2ab cos C and 2cb cos A,which can be obtained from cosine formulae.

From cosine formula we have:

Cos A = (b2┬а+ c2┬атАУ a2)/2bc

2bc cos A = (b2┬а+ c2┬атАУa2) тАж (i)

Cos B = (a2┬а+ c2┬атАУ b2)/2ac

2ac cos B = (a2┬а+ c2┬атАУb2)тАж (ii)

Cos C = (a2┬а+ b2┬атАУ c2)/2ab

2ab cos C = (a2┬а+ b2┬атАУc2) тАж (iii)

Now let us add equation (i), (ii) and (ii) we get,

2bc cos A + 2ac cos B + 2ab cos C = (b2┬а+c2┬атАУ a2) + (a2┬а+ c2┬атАУb2) + (a2┬а+ b2┬атАУ c2)

Upon simplification we get,

= c2┬а+ b2┬а+ a2

2 (bc cos A + ac cos B + ab cos C) = a2┬а+b2┬а+ c2

Hence proved.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×