MENU
Question -

For any ΔABC show that
(c2 –a2 + b2) tan A = (a2 – b2 +c2) tan B = (b2 – c2 + a2)tan C



Answer -

Let us consider LHS:

(c2 – a2 + b2),(a2 – b2 + c2), (b2 –c2 + a2)

We know sine rule in Δ ABC

As LHS contain (c2 – a2 +b2), (a2 – b2 + c2)and (b2 – c2 + a2), which canbe obtained from cosine formulae.

From cosine formula we have:

Cos A = (b2 + c2 – a2)/2bc

2bc cos A = (b2 + c2 –a2)

Let us multiply both the sides by tan A we get,

2bc cos A tan A = (b2 + c2 –a2) tan A

2bc cos A (sin A/cos A) = (b2 + c2 –a2) tan A

2bc sin A = (b2 + c2 –a2) tan A … (i)

Cos B = (a2 + c2 – b2)/2ac

2ac cos B = (a2 + c2 –b2)

Let us multiply both the sides by tan B we get,

2ac cos B tan B = (a2 + c2 –b2) tan B

2ac cos B (sin B/cos B) = (a2 + c2 –b2) tan B

2ac sin B = (a2 + c2 –b2) tan B … (ii)

Cos C = (a2 + b2 – c2)/2ab

2ab cos C = (a2 + b2 –c2)

Let us multiply both the sides by tan C we get,

2ab cos C tan C = (a2 + b2 –c2) tan C

2ab cos C (sin C/cos C) = (a2 + b2 –c2) tan C

2ab sin C = (a2 + b2 –c2) tan C … (iii)

As we are observing that sin terms are being involvedso let’s use sine formula.

From sine formula we have,

Let us multiply abc to each of the expression we get,

bc sin A = ac sin B = ab sin C

2bc sin A = 2ac sin B = 2ab sin C

 From equation(i), (ii) and (iii) we have,

(c2 – a2 + b2)tan A = (a2 – b2 + c2) tan B = (b2 –c2 + a2) tan C

Hence proved.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×