MENU
Question -

For any ΔABC show that c (a cos B – b cos A) = a2 – b2



Answer -

Let us consider LHS:

c (a cos B – b cos A)

As LHS contain ca cos B and cb cos A which can beobtained from cosine formulae.

From cosine formula we have:

Cos A = (b2 + c2 – a2)/2bc

bc cos A = (b2 + c2 –a2)/2 … (i)

Cos B = (a2 + c2 – b2)/2ac

ac cos B = (a2 + c2 –b2)/2 … (ii)

Now let us subtract equation (ii) from (i) we get,

ac cos B – bc cos A = (a2 + c2 –b2)/2 – (b2 + c2 – a2)/2

= a2 – b2

c (a cos B – b cos A) =a2 – b2

Hence proved.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×