MENU
Question -

For anyΔABC, show that b (c cos A – a cos C) = c2 – a2



Answer -

Let us consider LHS:

b (c cos A – a cos C)

As LHS contain bc cos A and ab cos C which can beobtained from cosine formulae.

From cosine formula we have:

Cos A = (b2 + c2 – a2)/2bc

bc cos A = (b2 + c2 –a2)/2 … (i)

Cos C = (a2 + b2 – c2)/2ab

ab cos C = (a2 + b2 –c2)/2 … (ii)

Now let us subtract equation (i) and (ii) we get,

bc cos A – ab cos C = (b2 + c2 –a2)/2 – (a2 + b2 – c2)/2

= c2 – a2

b (c cos A – a cos C) =c2 – a2

Hence proved.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×