MENU
Question -

a (sin B – sin C) + b (sin C – sin A) + c (sin A – sin B) = 0



Answer -

By using the sine rule we know,

a = k sin A, b = k sin B, c = k sin C

Let us consider LHS:

a (sin B – sin C) + b (sin C – sin A) + c (sin A – sin B)

Substituting the values of a, b, c from sine rule inabove equation, we get

a (sin B – sin C) + b (sin C – sin A) + c (sin A – sinB) = k sin A (sin B – sin C) + k sin B (sin C – sin A) + k sin C (sin A – sin B)

= k sin A sin B – k sin A sin C + k sin B sin C – ksin B sin A + k sin C sin A – k sin C sin B

Upon simplification, we get

= 0

= RHS

Hence proved.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×